Advertisement

Magnesium – das unterschätzte Mineral

Rolle von Magnesium im Stoffwechsel und praktische Empfehlungen
  • Roland StegmannEmail author
Orthomolekulare Medizin
  • 6 Downloads

Zusammenfassung

Neben seiner Funktion als Elektrolyt spielt Magnesium eine entscheidende Rolle im Stoffwechsel. Mehr als 700 Enzymsysteme benötigen Magnesium als Kofaktor. Von zentraler Bedeutung ist das Mineral für den Energiestoffwechsel. Zahlreiche Hormone und Neurotransmitter sowie alle Organe und Gewebe sind zum richtigen Funktionieren auf Magnesium angewiesen. Ein Mangel kann sich folglich in ganz unterschiedlichen Formen manifestieren, was seine Erkennung erschweren kann. Dutzende von Symptomen werden mit einem Magnesiummangel in Verbindung gebracht. Erhebungen lassen vermuten, dass Magnesiummangel in der Bevölkerung weiter verbreitet ist als bislang angenommen. Viele Ursachen können dazu beitragen. Zahlreiche Studien zeigen, dass Magnesium bei der Therapie und Prävention vieler Erkrankungen erfolgreich eingesetzt werden kann. Für einen breiteren Einsatz in der Medizin sprechen die hohe Verträglichkeit, das breite therapeutische Spektrum, die einfache Anwendung, das weitgehende Fehlen von Interaktionen mit Medikamenten, die kurze Halbwertszeit und nicht zuletzt der günstige Preis.

Schlüsselwörter

Magnesium Magnesiummangel Therapie mit Magnesium Magnesiumsupplementierung Magnesium im Stoffwechsel 

Magnésium – le minéral sous-estimé

Rôle du magnésium dans le métabolisme et recommandations pratiques

Résumé

En plus de sa fonction d’électrolyte, le magnésium joue un rôle déterminant dans le métabolisme. Plus de 700 enzymes dépendent du magnésium qui leur sert de cofacteur pour fonctionner. Le magnésium est d’une importance primordiale pour le métabolisme lié au système énergétique. Un grand nombre d’hormones et de neurotransmetteurs ainsi que tous les organes et tissus ne fonctionnent qu’en sa présence. Une carence peut se manifester de différentes manières, ce qui rend sa détection difficile dans la plupart des cas. Des douzaines de symptômes peuvent en être à l’origine. Des études basées sur des données collectées par questionnaires suggèrent qu’une carence en magnésium est bien plus répandue que communément admis. Les causes en sont nombreuses. Une multitude d’études démontre l’efficacité thérapeutique et préventive du magnésium dans de nombreuses maladies. Son utilisation plus répandue en médecine s’impose vu sa grande tolérance, son vaste spectre thérapeutique, son utilisation simple, l’absence pratiquement absolue d’interactions médicamenteuses, sa demi-vie courte et notamment, son prix abordable.

Mots clés

Magnésium Carence en magnésium Thérapie avec magnésium Supplémentation en magnésium Magnésium et métabolisme 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

R. Stegmann gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Rosanoff A (2009) The essential nutrient magnesium—key to Mitochondrial ATP production and much more. https://www.prohealth.com/library/the-essential-nutrient-magnesium-key-to-mitochondrial-atp-production-and-much-more-26273 (Erstellt: 8. Juni 2009)Google Scholar
  2. 2.
    Hartwig A (2001) Role of magnesium in genomic stability. Mutat Res 475(1–2):113–121PubMedGoogle Scholar
  3. 3.
    Arigony AL, de Oliveira IM, Machado M et al (2013) The influence of micronutrients in cell culture: a reflection on viability and genomic stability. Biomed Res Int.  https://doi.org/10.1155/2013/597282 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rosanoff A, Weaver CM, Rude RK (2012) Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutr Rev 70(3):153–164PubMedGoogle Scholar
  5. 5.
    Seelig MS (1964) The requirement of magnesium by the normal adult. Am J Clin Nutr 14(6):342–390Google Scholar
  6. 6.
    Seelig MS (1981) Magnesium requirements in human nutrition. Magnes Bull 3(Suppl 1a):26–47Google Scholar
  7. 7.
    Graham L, Caesar J, Burger A (1960) Gastointestinal absorption and excretion of Mg 28 in man. Metabolism 9:646–659PubMedGoogle Scholar
  8. 8.
    Glei M et al (1995) Magnesium content of foodstuffs and beverages and magnesium intake of adults in Germany. Magnes Bull 17:22–28Google Scholar
  9. 9.
    Cashman KD, Flynn A (1999) Optimal nutrition: calcium, magnesium and phosphorus. Proc Nutr Soc 58(2):477–487PubMedGoogle Scholar
  10. 10.
    Ismail Y, Ismail AA, Ismail AA (2010) The underestimated problem of using serum magnesium measurements to exclude magnesium deficiency in adults; a health warning is needed for “normal” results. Clin Chem Lab Med 48(3):323–327PubMedGoogle Scholar
  11. 11.
    Mircetić RN et al (2001) Magnesium concentration in plasma, leukocytes and urine of children with intermittent asthma. Clin Chim Acta 312(1–2):197–203PubMedGoogle Scholar
  12. 12.
    Mauskop A et al (1993) Deficiency in serum ionized magnesium but not total magnesium in patients with migraines. Possible role of ICa2+/IMg2+ ratio. Headache 33(3):135–138PubMedGoogle Scholar
  13. 13.
    Altura BM, Altura BT (1996) Role of magnesium in patho-physiological processes and the clinical utility of magnesium ion selective electrodes. Scand J Clin Lab Invest 56(Suppl. 224):211–234.  https://doi.org/10.3109/00365519609088642 CrossRefGoogle Scholar
  14. 14.
    Chazov EI et al (1974) Taurine and electrical activity of the heart. Circ Res 35(Suppl. 3):11–21PubMedGoogle Scholar
  15. 15.
    Bolland MJ et al (2008) Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ 336(7638):262–266PubMedPubMedCentralGoogle Scholar
  16. 16.
    Bolland MJ et al (2010) Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta analysis. BMJ 341:c3691PubMedPubMedCentralGoogle Scholar
  17. 17.
    Bolland MJ et al (2011) Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Woman’s Health Initiative Limited Access Dataset and Meta-Analysis. BMJ 342:d2040PubMedPubMedCentralGoogle Scholar
  18. 18.
    Bolland MJ et al (2013) Calcium supplements and cardiovascular risk: 5 years on. Ther Adv Drug Saf 4(5):199–210PubMedPubMedCentralGoogle Scholar
  19. 19.
    Nicoll R, Howard JM, Henein MY (2015) A review of the effect of diet on cardiovascular calcification. Int J Mol Sci 16(4):8861–8883PubMedPubMedCentralGoogle Scholar
  20. 20.
    Hruby A, O’Donnell CJ, Jacques PF et al (2014) Magnesium intake is inversely associated with coronary artery calcification: the Framingham Heart Study. Jacc Cardiovasc Imaging 7(1):59–69PubMedGoogle Scholar
  21. 21.
    Maier JA, Malpuech-Brugere C, Zimowska W et al (2004) Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis. Biochim Biophys Acta 1689(1):13–21PubMedGoogle Scholar
  22. 22.
    Labeeuw M et al (1987) Role of magnesium in the physiopathology and treatment of calcium renal lithiasis. Presse Med 16(1):25–27PubMedGoogle Scholar
  23. 23.
    Massey L (2005) Magnesium therapy for nephrolithiasis. Magnes Res 18(2):123–126PubMedGoogle Scholar
  24. 24.
    Liao F, Folsom AR, Brancati FL (1998) Is low magnesium concentration a risk factor for coronary heart disease? The atherosclerosis risk in communities (ARIC) study. Am Heart J 136(3):480–490PubMedGoogle Scholar
  25. 25.
    Ford ES (1999) Serum magnesium and ischaemic heart disease: findings from a national sample of US adults. Int J Epidemiol 28(4):645–651PubMedGoogle Scholar
  26. 26.
    Del Gobbo LC, Imamura F, Wu JH et al (2013) Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 98(1):160–173PubMedPubMedCentralGoogle Scholar
  27. 27.
    Guasch-Ferre M, Bullo M, Estruch R et al (2014) Dietary magnesium intake is inversely associated with mortality in adults at high cardiovascular disease risk. J Nutr 144(1):55–60PubMedGoogle Scholar
  28. 28.
    Yamori Y, Sagara M, Mizushima S et al (2015) An inverse association between magnesium in 24-h urine and cardiovascular risk factors in middle-aged subjects in 50 CARDIAC Study populations. Hypertens Res 38(3):219–225PubMedGoogle Scholar
  29. 29.
    Kolte D, Vijayaraghavan K, Khera S et al (2014) Role of magnesium in cardiovascular diseases. Cardiol Rev 22(4):182–192PubMedGoogle Scholar
  30. 30.
    Kisters K et al (1999) Hypomagnesaemia, borderline hypertension and hyperlipidaemia. Magnes Bull 21:31–34Google Scholar
  31. 31.
    Resnick LM et al (2000) Factors affecting blood pressure responses to diet: the Vanguard study. Am J Hypertens 13(9):956–965PubMedGoogle Scholar
  32. 32.
    Rosanoff A, Plesset MR (2013) Oral magnesium supplements decrease high blood pressure (SBP > 155 mm Hg) in hypertensive subjects on anti-hypertensive medications: a targeted meta-analysis. Magnes Res 26(3):93–99PubMedGoogle Scholar
  33. 33.
    Singh RB et al (1991) Does dietary magnesium modulate blood lipids? Biol Trace Elem Res 30(1):59–64PubMedGoogle Scholar
  34. 34.
    Corica F et al (1994) Effects of oral magnesium supplementation on plasma lipid concentrations in patients with non-insulin-dependent diabetes mellitus. Magnes Res 7(1):43–47PubMedGoogle Scholar
  35. 35.
    Durlach J (1996) Commentary on recent epidemiological and clinical advances. Magnes Res 9(2):139–141PubMedGoogle Scholar
  36. 36.
    King DE et al (2006) Magnesium supplement intake and C‑reactive protein levels in adults. Nutr Res 26(5):193–196Google Scholar
  37. 37.
    Shechter M et al (2001) Beneficial antithrombotic effects of the association of pharmacological oral magnesium therapy with aspirin in coronary heart disease patients. Magnes Res 13(4):275–284Google Scholar
  38. 38.
    Parikka HJ, Toivonen LK (1999) Acute effects of intravenous magnesium on ventricular refractoriness and monophasic action potential duration in humans. Scand Cardiovasc J 33(5):300–305PubMedGoogle Scholar
  39. 39.
    Thiele R et al (2000) Effect of intravenous magnesium on ventricular tachyarrhythmias associated with acute myocardial infarction. Magnes Res 13(2):111–122PubMedGoogle Scholar
  40. 40.
    Ceremuzyński L et al (2000) Hypermagnesemia in heart failure with ventricular arrhythmias. Beneficial effects of magnesium supplementation. J Intern Med 247(1):78–86PubMedGoogle Scholar
  41. 41.
    Dyckner T, Wester PO (1984) Magnesium deficiency in congestive heart failure. Acta Pharmacol Toxicol (Copenh) 54(Suppl.s1):119–123Google Scholar
  42. 42.
    England MR et al (1992) Magnesium administration and dysrhythmias after cardiac surgery. JAMA 268(17):2395–2402PubMedGoogle Scholar
  43. 43.
    Caspi J et al (1995) Effects of magnesium on myocardial function after coronary artery bypass grafting. Ann Thorac Surg 59(4):942–947PubMedGoogle Scholar
  44. 44.
    Toraman F et al (2001) Magnesium infusion dramatically decreases the incidence of atrial fibrillation after coronary artery bypass grafting. Ann Thorac Surg 72(4):1256–1262PubMedGoogle Scholar
  45. 45.
    Teo KK et al (1991) Effects of intravenous magnesium in suspected acute myocardial infarction: overview of randomized trials. BMJ 303(6816):1499–1503PubMedPubMedCentralGoogle Scholar
  46. 46.
    Teo KK, Yusuf S (1993) Role of magnesium in reducing mortality in acute myocardial infarction. A review of the evidence. Drugs 46(3):347–359PubMedGoogle Scholar
  47. 47.
    Woods KL et al (1992) Intravenous magnesium sulphate in suspected acute myocardial infarction: results of the second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2). Lancet 339(8809):1553–1558PubMedGoogle Scholar
  48. 48.
    Woods KL, Fletcher S (1994) Long-term outcome after intravenous magnesium sulphate in suspected acute myocardial infarction: the second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2). Lancet 343(8901):816–819PubMedGoogle Scholar
  49. 49.
    ISIS-4 Collaboration Group (1995) ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate and intravenous magnesium sulphate in 58’050 patients with suspected acute myocardial infarction. Lancet 345(8951):669–682Google Scholar
  50. 50.
    Seelig MS (1994) Cardiovascular reactions to stress intensified by magnesium deficit, in Consequences of magnesium deficiency on the enhancement of stress reactions; preventive and therapeutic implications: a review. J Am Coll Nutr 13(5):429–446PubMedGoogle Scholar
  51. 51.
    Chiuve SE, Korngold EC, Januzzi JL Jr. et al (2011) Plasma and dietary magnesium and risk of sudden cardiac death in women. Am J Clin Nutr 93(2):253–260PubMedGoogle Scholar
  52. 52.
    Seelig MS (1982) Prenatal and neonatal mineral deficiencies: magnesium, zinc and chromium. In: Lifshitz F (Hrsg) Clinical disorders in Pedriatic nutrition. Marcel Dekker, N.Y., S 167–196Google Scholar
  53. 53.
    Seelig MS (1991) Magnesium in pregnancy: special needs for the adolescent mother. J Am Coll Nutr 10:566Google Scholar
  54. 54.
    Caddel JL (2001) Magnesium deficiency promotes muscle weakness, contribution to the risk of sudden infant death (SIDS) in infants sleeping prone. Magnes Res 14(1–2):39–50Google Scholar
  55. 55.
    Abraham GE (1982) The calcium controversy. J Appl Nutr 34(2). www.mgwater.com
  56. 56.
    Sojka JE, Weaver CM (1995) Magnesium supplementation and osteoporosis. Nutr Rev 53(3):71–74PubMedGoogle Scholar
  57. 57.
    Abraham GE, Grewal HA (1990) A total dietary program emphasizing magnesium instead of calcium. Effect on the mineral density of calcaneous bone in postmenopausal women on hormonal therapy. J Reprod Med 35(5):503–507PubMedGoogle Scholar
  58. 58.
    Seelig MS (1990) Increased magnesium need with use of combined oestrogen and calcium for osteoporosis treatment. Magnes Res 3(3):197–215PubMedGoogle Scholar
  59. 59.
    Orchard TS, Larson JC, Alghothani N et al (2014) Magnesium intake, bone mineral density, and fractures: results from the Women’s Health Initiative Observational Study. Am J Clin Nutr 99(4):926–933PubMedPubMedCentralGoogle Scholar
  60. 60.
    Humphries S et al (1999) Low dietary magnesium is associated with insulin resistance in a sample of young, non-diabetic Black Americans. Am J Hypertens 12(8):747–756PubMedGoogle Scholar
  61. 61.
    Alzaid AA et al (1995) Effects of insulin on plasma magnesium in noninsulin-dependent diabetes mellitus: evidence for insulin resistance. J Clin Endocrinol Metab 80(4):1376–1381PubMedGoogle Scholar
  62. 62.
    Guerrero-Romero F, Tamez-Perez HE, Gonzalez-Gonzalez G et al (2004) Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. Diabetes Metab 30(3):253–258PubMedGoogle Scholar
  63. 63.
    Simental-Mendia LE, Sahebkar A, Rodriguez-Moran M et al (2016) A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol Res 111:272–282PubMedGoogle Scholar
  64. 64.
    de Lourdes Lima M et al (1998) The effect of magnesium supplementation in increasing doses on the control of type 2 diabetes. Diabetes Care 21(5):682–686Google Scholar
  65. 65.
    Engelen W et al (2000) Are low magnesium levels in type 1 diabetes associated with electromyographical signs of polyneuropathy? Magnes Res 13(3):197–203PubMedGoogle Scholar
  66. 66.
    Ma E et al (2010) High dietary intake of magnesium may decrease risk of colorectal cancer in Japanese men. J Nutr 140(4):779–785PubMedGoogle Scholar
  67. 67.
    Wark PA, Lau R, Norat T et al (2012) Magnesium intake and colorectal tumor risk: a case-control study and meta-analysis. Am J Clin Nutr 96(3):622–631PubMedGoogle Scholar
  68. 68.
    Dibaba D, Xun P, Yokota K et al (2015) Magnesium intake and incidence of pancreatic cancer: the VITamins and Lifestyle study. Br J Cancer 113(11):1615–1621PubMedPubMedCentralGoogle Scholar
  69. 69.
    Huxley R, Ansary-Moghaddam A, Berrington de Gonzalez A et al (2005) Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer 92(11):2076–2083PubMedPubMedCentralGoogle Scholar
  70. 70.
    Ben Q, Xu M, Ning X et al (2011) Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. Eur J Cancer 47(13):1928–1937PubMedGoogle Scholar
  71. 71.
    Chari ST, Leibson CL, Rabe KG et al (2008) Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology 134(1):95–101PubMedGoogle Scholar
  72. 72.
    Song S, Wang B, Zhang X et al (2015) Long-term diabetes mellitus is associated with an increased risk of pancreatic cancer: a Meta-analysis. PLoS ONE 10(7):e134321PubMedPubMedCentralGoogle Scholar
  73. 73.
    Batabyal P, Vander Hoorn S, Christophi C et al (2014) Association of diabetes mellitus and pancreatic adenocarcinoma: a meta-analysis of 88 studies. Ann Surg Oncol 21(7):2453–2462PubMedGoogle Scholar
  74. 74.
    Stolzenberg-Solomon RZ, Graubard BI, Chari S et al (2005) Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers. JAMA 294(22):2872–2878PubMedGoogle Scholar
  75. 75.
    Wolpin BM, Bao Y, Qian ZR et al (2013) Hyperglycemia, insulin resistance, impaired pancreatic beta-cell function, and risk of pancreatic cancer. J Natl Cancer Inst 105(14):1027–1035PubMedPubMedCentralGoogle Scholar
  76. 76.
    Evans JM, Donnelly LA, Emslie-Smith AM et al (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330(7503):1304–1305PubMedPubMedCentralGoogle Scholar
  77. 77.
    Lee MS, Hsu CC, Wahlqvist ML et al (2011) Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer 11:20PubMedPubMedCentralGoogle Scholar
  78. 78.
    Wang LW, Li ZS, Zou DW et al (2008) Metformin induces apoptosis of pancreatic cancer cells. World J Gastroenterol 14(47):7192–7198PubMedPubMedCentralGoogle Scholar
  79. 79.
    Sherwood RA et al (1986) Magnesium and the premenstrual syndrome. Ann Clin Biochem 23(6):667–670PubMedGoogle Scholar
  80. 80.
    Posaci C et al (1994) Plasma copper, zinc and magnesium levels in patients with premenstrual tension syndrome. Acta Obstet Gynecol Scand 73(6):452–455PubMedGoogle Scholar
  81. 81.
    Muneyvirci-Delale O et al (1998) Sex steroid hormones modulate serum ionized magnesium and calcium levels throughout the menstrual cycle in women. Fertil Steril 69(5):958–962PubMedGoogle Scholar
  82. 82.
    Werbach M (1995) Premenstrual syndrome: magnesium. Townsend Lett Dr 13:26Google Scholar
  83. 83.
    Facchinetti F et al (1991) Oral magnesium successfully relieves premenstrual mood changes. Obstet Gynecol Clin North Am 78(2):177–181Google Scholar
  84. 84.
    Benassi L et al (1992) Effectiveness of magnesium pidolate in the prophylactic treatment of primary dysmenorrhea. Clin Exp Obstet Gynecol 19(3):176–179PubMedGoogle Scholar
  85. 85.
    Fontana-Klaiber H, Hogg B (1990) Therapeutische Wirkung von Magnesium bei Dysmenorroe. Schweiz Rundsch Med Prax 79(16):491–494PubMedGoogle Scholar
  86. 86.
    Seifert B et al (1989) Magnesium – a new therapeutic alternative in primary dysmenorrhea. Zentralbl Gynakol 111(11):755–760PubMedGoogle Scholar
  87. 87.
    Goldberg B (1998) Alternative medicine guide: women’s health series 1. Future Medicine Publishing, TiburonGoogle Scholar
  88. 88.
    Edorh AP et al (2003) Magnesium content in seminal fluid as an indicator of chronic prostatitis. Cell Mol Biol 49:419–423Google Scholar
  89. 89.
    Seelig MS (1994) Consequences of magnesium deficiency on the enhancement of stress reactions; preventive and therapeutic implications: a review. J Am Coll Nutr 13(5):429–446. www.mgwater.com PubMedGoogle Scholar
  90. 90.
    Conradt A, Weidinger AH (1982) The central position of magnesium in the management of fetal hypotrophy—a contribution to the pathomechanism of utero-placental insufficiency, prematurity and poor intrauterine fetal growth as well as pre-eclampsia. Magnes Bull 4:103–124Google Scholar
  91. 91.
    Handwerker SM et al (1993) Ionized serum magnesium levels in umbilical cord blood of normal pregnant women at delivery: relationship to calcium, demographics and birthweight. Am J Perinatol 10(5):392–397PubMedGoogle Scholar
  92. 92.
    Handwerker SM, Altura BT, Altura BM (1996) Serum ionized magnesium and other electrolytes in the antenatal period of human pregnancy. J Am Coll Nutr 15(1):36–43PubMedGoogle Scholar
  93. 93.
    Almonte RA et al (1999) Gestational magnesium deficiency is deleterious to fetal outcome. Biol Neonate 76(1):26–32PubMedGoogle Scholar
  94. 94.
    Peikert A, Wilimzig C, Köhne-Volland R (1996) Prophylaxis of migraine with oral magnesium: results from a prospective, multi-center, placebo-controlled and double-blind randomized study. Cephalagia 16(4):257–263Google Scholar
  95. 95.
    Chiu HY, Yeh TH, Huang YC et al (2016) Effects of intravenous and oral magnesium on reducing migraine: a Meta-analysis of randomized controlled trials. Pain Physician 19(1):E97–E112PubMedGoogle Scholar
  96. 96.
    Mauskop A, Varughese J (2012) Why all migraine patients should be treated with magnesium. J Neural Transm (vienna) 119(5):575–579Google Scholar
  97. 97.
    Talebi M, Savadi-Oskouei D, Farhoudi M et al (2011) Relation between serum magnesium level and migraine attacks. Neurosciences (Riyadh) 16(4):320–323Google Scholar
  98. 98.
    Charles AC, Baca SM (2013) Cortical spreading depression and migraine. Nat Rev Neurol 9(11):637–644PubMedGoogle Scholar
  99. 99.
    Sun-Edelstein C, Mauskop A (2009) Role of magnesium in the pathogenesis and treatment of migraine. Expert Rev Neurother 9(3):369–379PubMedGoogle Scholar
  100. 100.
    Mauskop A et al (1995) Intravenous magnesium sulfate relieves cluster headache in patients with low serum ionized magnesium levels. Headache 35(10):597–600PubMedGoogle Scholar
  101. 101.
    Werbach MR (1995) Nutritional influences on aggressive behavior. J Orthomol Med 7(1):45–51Google Scholar
  102. 102.
    Cox RH, Shealy CN et al (1996) Significant magnesium deficiency in depression. J Neur Orth Med Surg 17:7–9Google Scholar
  103. 103.
    Seelig MS (1998) Review and hypothesis: might patients with the chronic fatigue syndrome have latent tetany of magnesium deficiency. J Chronic Fatigue Syndr 4(2):77–108Google Scholar
  104. 104.
    Cox IM et al (1991) Red blood cell magnesium and chronic fatigue syndrome. Lancet 337(8744):757–760PubMedGoogle Scholar
  105. 105.
    Vink R, Nechifor M (2011) Magnesium in the central nervous system. University of Adelaide Press, AdelaideGoogle Scholar
  106. 106.
    Gröber U, Kisters K (2017) Arzneimittel als Mikronährstoffräuber, 2. Aufl. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  107. 107.
    Andersen G (2011) Lebensmitteltabelle für die Praxis, 5. Aufl. Der kleine Souci/Fachmann/Kraut. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.ZuchwilSchweiz

Personalised recommendations