Advertisement

UpDate 2018: Kupferspirale, Kupferkette, Kupferperlen-Ball

  • Allessandra Tramontana
Die Mädchensprechstunde
  • 5 Downloads

Das Konzept der intrauterinen Kontrazeption ist seit einem Jahrhundert immer das gleiche und trotzdem immer anders. Das Prinzip ist die lokale Verhütung in der Gebärmutter, allerdings mit immer anderen Mechanismen, in immer anderer Form und unter immer anderem Namen. 1909: Der Beginn der IUC (intrauterine contraception) als seidener Faden [1]. 1923: Die ersten Erfolge mit dem IUP (Intrauterinpessar) als Silberring [2]. 1958: Die Spirale als IUD (intrauterine device) erstmals aus Plastik. 1971: Das erste IUD umwickelt mit Kupferdraht. 1988: GyneFix®, das frameless IUD mit besserer Anpassungsfähigkeit [3]. 2014: Der IUB (Intrauterinball) mit Formgedächtnis [4]. Ob Seide, Plastik, Silber oder Gold – die Spirale ist seit 100 Jahren im Einsatz und hat sich aus Kupfer bis heute durchgesetzt.

UpDate 2018

Stetige Forschung, erweitertes Anwenderspektrum und neue Technik garantieren mit Sicherheit auch noch die nächsten 100 Jahre der intrauterinen Kontrazeption und fördern dabei den...

UpDate 2018: Intrauterine Copper Contraceptive Devices

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Tramontana gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Richter R (1909) Ein Mittel zur Verhütung der Konzeption. Dtsch Med Wochenschr 35:1525CrossRefGoogle Scholar
  2. 2.
    Pust K (1923) Ein brauchbarer Frauenschutz. Dtsch Med Wochenschr 49:952Google Scholar
  3. 3.
    Wildemeersch D, van der Pas H, Thiery M et al (1988) The Copper-Fix (Cu-Fix): a new concept in IUD technology. Adv Contracept 4(3):197–205CrossRefPubMedGoogle Scholar
  4. 4.
    Baram I, Weinstein A, Trussell J (2014) The IUB, a newly invented IUD: a brief report. Contraception 89(2):139–141CrossRefPubMedGoogle Scholar
  5. 5.
    Anteby E, Revel A, Ben-Chetrit A et al (1993) Intrauterine device failure: relation to its location within the uterine cavity. Obstet Gynecol 81(1):112–114PubMedGoogle Scholar
  6. 6.
    O’Brien PA, Kulier R, Helmerhorst FM et al (2008) Copper-containing, framed intrauterine devices for contraception: a systematic review of randomized controlled trials. Contraception 77(5):318–327CrossRefPubMedGoogle Scholar
  7. 7.
    De la Cruz D, Cruz A, Arteaga M, Castillo L, Tovalin H (2005) Blood copper levels in Mexican users of the T380A IUD. Contraception 72(2):122–125CrossRefPubMedGoogle Scholar
  8. 8.
    Hostynek JJ, Maibach HI (2004) Copper hypersensitivity: dermatologic aspects. Dermatol Ther 17(4):328–333CrossRefPubMedGoogle Scholar
  9. 9.
    WHO Scientific Group on the Mechanism of Action Safety and Efficacy of Intrauterine Devices & World Health Organization (1987) Mechanism of action, safety and efficacy of intrauterine devices. Report of a WHO Scientific Group. World Health Organization technical report series, Bd. 753, S 1–91Google Scholar
  10. 10.
    Sagiroglu N (1971) Phagocytosis of spermatozoa in the uterine cavity of woman using intrauterine device. Int J Fertil 16(1):1–14PubMedGoogle Scholar
  11. 11.
    Ammala M, Nyman T, Strengell L, Rutanen EM (1995) Effect of intrauterine contraceptive devices on cytokine messenger ribonucleic acid expression in the human endometrium. Fertil Steril 63(4):773–778CrossRefPubMedGoogle Scholar
  12. 12.
    Tetrault AM, Richman SM, Fei X, Taylor HS (2009) Decreased endometrial HOXA10 expression associated with use of the copper intrauterine device. Fertil Steril 92(6):1820–1824CrossRefPubMedGoogle Scholar
  13. 13.
    Alvarez F, Brache V, Fernandez E et al (1988) New insights on the mode of action of intrauterine contraceptive devices in women. Fertil Steril 49(5):768–773CrossRefPubMedGoogle Scholar
  14. 14.
    Ortiz ME, Croxatto HB, Bardin CW (1996) Mechanisms of action of intrauterine devices. Obstet Gynecol Surv 51(12 Suppl):S42–S51CrossRefPubMedGoogle Scholar
  15. 15.
    Seleem S, Hills FA, Salem HT et al (1996) Mechanism of action of the intrauterine contraceptive device: evidence for a specific biochemical deficiency in the endometrium. Hum Reprod 11(6):1220–1222CrossRefPubMedGoogle Scholar
  16. 16.
    Patai K, Szilagyi G, Noszal B, Szentmariay I (2003) Local tissue effects of copper-containing intrauterine devices. Fertil Steril 80(5):1281–1283CrossRefPubMedGoogle Scholar
  17. 17.
    Rivera R, Yacobson I, Grimes D (1999) The mechanism of action of hormonal contraceptives and intrauterine contraceptive devices. Am J Obstet Gynecol 181(5 Pt 1):1263–1269CrossRefPubMedGoogle Scholar
  18. 18.
    Rabe T, Bruckner C (2010) Gemeinsame Stellungnahme der Deutschen Gesellschaft für Gynäkologische Endokrinologie und Fortpflanzungsmedizin in Zusammenarbeit mit dem Berufsverband der FrauenärzteGoogle Scholar
  19. 19.
    Guleria K, Agarwal N, Mishra K et al (2004) Evaluation of endometrial steroid receptors and cell mitotic activity in women using copper intrauterine device: Can Cu-T prevent endometrial cancer? J Obstet Gynaecol Res 30(3):181–187CrossRefPubMedGoogle Scholar
  20. 20.
    Grimes DA, Mishell DR Jr. (2008) Intrauterine contraception as an alternative to interval tubal sterilization. Contraception 77(1):6–9CrossRefPubMedGoogle Scholar
  21. 21.
    Peterson HB, Xia Z, Hughes JM et al (1996) The risk of pregnancy after tubal sterilization: findings from the U.S. Collaborative review of sterilization. Am J Obstet Gynecol 174(4):1161–1168 (discussion 8–70)CrossRefPubMedGoogle Scholar
  22. 22.
    Sivin I, Stern J (1994) Health during prolonged use of levonorgestrel 20 micrograms/d and the copper TCu 380Ag intrauterine contraceptive devices: a multicenter study. International Committee for Contraception Research (ICCR). Fertil Steril 61(1):70–77CrossRefPubMedGoogle Scholar
  23. 23.
    United Nations Development Programme’ Correspondence, United Nations Population Fund, World Health Organization, World Bank, Special Programme of Research, Development and Research Training in Human Reproduction (1997) Long-term reversible contraception. Twelve years of experience with the TCu380A and TCu220C. Contraception 56(6):341–352Google Scholar
  24. 24.
    Farley TM, Rosenberg MJ, Rowe PJ et al (1992) Intrauterine devices and pelvic inflammatory disease: an international perspective. Lancet 339(8796):785–788CrossRefPubMedGoogle Scholar
  25. 25.
    Lee NC, Rubin GL, Borucki R (1988) The intrauterine device and pelvic inflammatory disease revisited: new results from the Women’s Health Study. Obstet Gynecol 72(1):1–6PubMedGoogle Scholar
  26. 26.
    Persson E, Holmberg K, Dahlgren S, Nilsson L (1983) Actinomyces israelii in the genital tract of women with and without intra-uterine contraceptive devices. Acta Obstet Gynecol Scand 62(6):563–568CrossRefPubMedGoogle Scholar
  27. 27.
    Lippes J (1999) Pelvic actinomycosis: a review and preliminary look at prevalence. Am J Obstet Gynecol 180(2 Pt 1):265–269CrossRefGoogle Scholar
  28. 28.
    Westhoff C (2007) IUDs and colonization or infection with actinomyces. Contraception 75(6 Suppl):S48–S50CrossRefPubMedGoogle Scholar
  29. 29.
    Hubacher D, Reyes V, Lillo S et al (2006) Preventing copper intrauterine device removals due to side effects among first-time users: randomized trial to study the effect of prophylactic ibuprofen. Hum Reprod 21(6):1467–1472CrossRefPubMedGoogle Scholar
  30. 30.
    Rivera R, Chen-Mok M, McMullen S (1999) Analysis of client characteristics that may affect early discontinuation of the TCu-380A IUD. Contraception 60(3):155–160CrossRefPubMedGoogle Scholar
  31. 31.
    Lowe RF, Prata N (2013) Hemoglobin and serum ferritin levels in women using copper-releasing or levonorgestrel-releasing intrauterine devices: a systematic review. Contraception 87(4):486–496CrossRefPubMedGoogle Scholar
  32. 32.
    Hubacher D, Chen PL, Park S (2009) Side effects from the copper IUD: do they decrease over time? Contraception 79(5):356–362CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Arrowsmith ME, Aicken CR, Saxena S, Majeed A (2012) Strategies for improving the acceptability and acceptance of the copper intrauterine device. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd008896.pub2 CrossRefPubMedGoogle Scholar
  34. 34.
    Wu JP, Pickle S (2014) Extended use of the intrauterine device: a literature review and recommendations for clinical practice. Contraception 89(6):495–503CrossRefPubMedGoogle Scholar
  35. 35.
    Hubacher D (2007) Copper intrauterine device use by nulliparous women: review of side effects. Contraception 75(6 Suppl):S8–S11CrossRefPubMedGoogle Scholar
  36. 36.
    Lyus R, Lohr P, Prager S (2010) Use of the Mirena LNG-IUS and Paragard CuT380A intrauterine devices in nulliparous women. Contraception 81(5):367–371CrossRefPubMedGoogle Scholar
  37. 37.
    ACOG practice bulletin (2005) Clinical management guidelines for obstetrician-gynecologists. Number 59, January 2005. Intrauterine device. Obstet Gynecol 105(1):223–232CrossRefGoogle Scholar
  38. 38.
    Sivin I, Schmidt F (1987) Effectiveness of IUDs: a review. Contraception 36(1):55–84CrossRefPubMedGoogle Scholar
  39. 39.
    World Health Organization, Special Programme of Research, Development and Research Training in Human Reproduction, Task Force on the Safety and Efficacy of Fertility Regulating Methods (1990) The TCu380A, TCu220C, multiload 250 and Nova T IUDS at 3,5 and 7 years of use—results from three randomized multicentre trials. Contraception 42(2):141–158CrossRefGoogle Scholar
  40. 40.
    Sivin I (1991) Dose- and age-dependent ectopic pregnancy risks with intrauterine contraception. Obstet Gynecol 78(2):291–298PubMedGoogle Scholar
  41. 41.
    The World Health Organization’s Special Programme of Research, Development and Research Training in Human Reproduction, Task Force on Intrauterine Devices for Fertility Regulation (1985) A multinational case-control study of ectopic pregnancy. Clin Reprod Fertil 3(2):131–143Google Scholar
  42. 42.
    Marchbanks PA, Annegers JF, Coulam CB et al (1988) Risk factors for ectopic pregnancy. A population-based study. JAMA 259(12):1823–1827CrossRefPubMedGoogle Scholar
  43. 43.
    Ory HW (1981) Ectopic pregnancy and intrauterine contraceptive devices: new perspectives. The Women’s Health Study. Obstet Gynecol 57(2):137–144PubMedGoogle Scholar
  44. 44.
    Edelman DA, Porter CW (1987) The intrauterine device and ectopic pregnancy. Contraception 36(1):85–96CrossRefPubMedGoogle Scholar
  45. 45.
    Skjeldestad FE (1997) How effectively do copper intrauterine devices prevent ectopic pregnancy? Acta Obstet Gynecol Scand 76(7):684–690CrossRefPubMedGoogle Scholar
  46. 46.
    Rasheed SM, Abdelmonem AM (2011) Complications among adolescents using copper intrauterine contraceptive devices. Int J Gynaecol Obstet 115(3):269–272CrossRefPubMedGoogle Scholar
  47. 47.
    Shimoni N (2010) Intrauterine contraceptives: a review of uses, side effects, and candidates. Semin Reprod Med 28(2):118–125CrossRefPubMedGoogle Scholar
  48. 48.
    Vasquez P, Schreiber CA (2010) The missing IUD. Contraception 82(2):126–128CrossRefPubMedGoogle Scholar
  49. 49.
    Chen CP, Hsu TC, Wang W (1998) Ileal penetration by a multiload-Cu 375 intrauterine contraceptive device. A case report with review of the literature. Contraception 58(5):295–304CrossRefPubMedGoogle Scholar
  50. 50.
    Adoni A, Chetrit BA (1991) The management of intrauterine devices following uterine perforation. Contraception 43(1):77–81CrossRefPubMedGoogle Scholar
  51. 51.
    Zakin D, Stern WZ, Rosenblatt R (1981) Complete and partial uterine perforation and embedding following insertion of intrauterine devices. II. Diagnostic methods, prevention, and management. Obstet Gynecol Surv 36(8):401–417CrossRefPubMedGoogle Scholar
  52. 52.
    Cortessis VK, Barrett M, Brown Wade N et al (2017) Intrauterine device use and cervical cancer risk: a systematic review and meta-analysis. Obstet Gynecol 130(6):1226–1236CrossRefPubMedGoogle Scholar
  53. 53.
    O’Brien PA, Marfleet C (2001) Frameless versus classical intrauterine device for contraception. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd003282 CrossRefPubMedGoogle Scholar
  54. 54.
    van Kets H, Vrijens M, Van Trappen Y, Delbarge W, van der Pas H, Temmerman M et al (1995) The frameless GyneFix intrauterine implant: a major improvement in efficacy, expulsion and tolerance. Adv Contracept 11(2):131–142CrossRefPubMedGoogle Scholar
  55. 55.
    Wildemeersch D, Van Kets H, Vrijens M, Delbarge W, Van Trappen Y, Temmerman M et al (1997) Intrauterine contraception in adolescent women. The GyneFix intrauterine implant. Ann N Y Acad Sci 816:440–450CrossRefPubMedGoogle Scholar
  56. 56.
    Meirik O, Rowe PJ, Peregoudov A, Piaggio G, Petzold M (2009) The frameless copper IUD (GyneFix) and the TCu380A IUD: results of an 8‑year multicenter randomized comparative trial. Contraception 80(2):133–141CrossRefPubMedGoogle Scholar
  57. 57.
    O’Brien PA, Marfleet C (2005) Frameless versus classical intrauterine device for contraception. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd003282.pub2 CrossRefPubMedGoogle Scholar
  58. 58.
    Van Kets H, Van der Pas H, Thiery M et al (1997) The GyneFix implant systems for interval, postabortal and postpartum contraception: a significant advance in long-term reversible contraception. International Study Group on Intrauterine Drug Delivery. Eur J Contracept Reprod Health Care 2(1):1–13CrossRefPubMedGoogle Scholar
  59. 59.
    Wildemeersch D (2007) New frameless and framed intrauterine devices and systems—an overview. Contraception 75(6 Suppl):S82–S92CrossRefPubMedGoogle Scholar
  60. 60.
    Unal C, Eser A, Tozkir E, Wildemeersch D (2018) Comparison of expulsions following intracesarean placement of an innovative frameless copper-releasing IUD (Gyn-CS(R)) versus the TCu380A: a randomized trial. Contraception.  https://doi.org/10.1016/j.contraception.2018.03.034 CrossRefPubMedGoogle Scholar
  61. 61.
    Eser A, Unal C, Albayrak B, Wildemeersch D (2018) Clinical experience with a novel anchored, frameless copper-releasing contraceptive device for intra-caesarean insertion. Eur J Contracept Reprod Health Care 23(4):255–259CrossRefPubMedGoogle Scholar
  62. 62.
    Baram I, Weinstein A, Seidman DS (2014) A three-dimensional way to prevent pregnancy: the IUB intra uterine ball - a newly introduced IUD in clinical trials. J Obstet Gynaecol India 64(2):152–154CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wiebe E, Trussell J (2016) Discontinuation rates and acceptability during 1 year of using the intrauterine ball (the SCu380A). Contraception 93(4):364–366CrossRefPubMedGoogle Scholar
  64. 64.
    Ocon Medical (2016) Interim first year performance of the IUB SCu300A in comparison with the IUS TCu380A intrauterine deviceGoogle Scholar
  65. 65.
    Ocon Medical (2017) Sicherheit und Wirksamkeit des IUB™ SCu300B (MIDI) nach vorliegenden Pharmakovigilanz-BerichtenGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Geburtshilflich-Gynäkologische AbteilungSozialmedizinisches Zentrum Ost – DonauspitalWienÖsterreich

Personalised recommendations