Advertisement

Der Effekt von Wachstumshormon auf die menschlichen Alterungsprozesse. Teil 1

  • Michael Klentze
Originalien

Zusammenfassung

Eine große Anzahl von Studien weist auf die signifikante Reduktion der Wachstumshormonsekretion und der damit zusammenhängenden IGF-1-Plasmaspiegel während des menschlichen Alterungsprozesses hin. Diese Veränderungen gehen einher mit der Erniedrigung von Muskelmasse, Knochenmasse, Vitalität und dem Verlust von anderen wichtigen physiologischen Funktionen. Es finden sich ferner Verschlechterungen mentaler und kognitiver Funktionen und das gehäufte Auftreten einer erhöhten altersbedingten Fragilität. Außerdem nimmt das Risiko für Übergewicht und Adipositas zu. Diese Veränderungen sind begleitet von Insulinresistenz, Diabetes Typ 2 und kardiovaskulären Komplikationen. In dieser Arbeit werden die Wirkungen der Wachstumshormontherapie und ihre Bedeutung für die Präventionsmedizin, speziell für die verbesserte Lebensqualität, den Anstieg der Körpermagermasse, einhergehend mit einer Verminderung der abdominalen Fettmasse, und die deutlich verbesserte Skelett- und Muskelfunktion dargestellt. Im Zusammenhang damit stehen der Schutz vor dem kardiometabolischen Syndrom, ein durch rhGH normalisierter Blutdruck, eine Verminderung thrombotischer Marker sowie eine normalisierte endotheliale Funktion. Insgesamt kann demonstriert werden, dass die rhGH-Anwendung als ein hervorragendes Instrument in der Altersprävention geeignet sein könnte. Eine unabdingbare Voraussetzung ist, dass die Auswahl der Patienten nach klaren Kriterien erfolgt. Das bedeutet, dass die Indikationsstellung sich nach dem Ziel der Therapie, dem Ausschluss bekannter Risiken und Nebenwirkungen, dem Alter und möglichen Interaktionen mit anderen Therapien richten sollte.

Schlüsselwörter

Dwarf Mouse Model Adipositas Kardiometabolisches Syndrom Osteopenie Wachstumshormonmangel beim Erwachsenen (AGDH) 

The Effect of Growth Hormone on the Human Aging Process. Part 1

Abstract

An abundance of studies shows a significant reduction in the secretion of growth hormone (GH) and insulin-like growth factor (IGF)-1 plasma levels during the aging process. These changes are associated with a decrease in muscle and bone mass, loss of vitality and other physiological functions. The consequence of these changes may be an increase in frailty, the deterioration of mental and cognitive function and an increase in age-related diseases. This article discusses the different effects of GH deficiency in intervertebrates, mammals and humans. It will show that the use of recombinant human growth hormone (rhGH) has beneficial clinical effects on human health. These include health effects on brain function, the cardiovascular system, lipid and glucose metabolism and generally improved quality of life. Replacing hGH improves body composition with increased lean body mass and bone mass, improves skeletal and myocardial muscle function and structure, normalizes blood pressure, improves endothelial function as well as anti-atherogenic lipid patterns. Moreover, anti-platelet and anti-thrombotic activities in aging men and women may be improved. The aim of rhGH therapy to prevent age-related diseases during the aging process is presented. As a result of the improvements in these age-related disease markers, an increased individual life span has been reported in some cases. It can be demonstrated in general that GH treatment in adults may become an effective tool for use in preventive medicine. An essential prerequisite for the use of rhGH in aging men and women should be a clear selection of patients, strictly bound to the indication for treatment, the risk factors and any possible side effects.

Keywords

Dwarf mouse models Obesity Metabolic syndrome Osteopenia Adult growth hormone deficiency (AGHD) 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Klentze gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha Goldberg PYAF et al (1990) Growth hormone, effects of human growth hormone in men over 60 years old. N Engl J Med 323:1–6CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Perls TT, Reisman NR, Olshansky SJ (2005) Provision and distribution of growth hormone for “antiaging”: clinical and legal issues. JAMA 294:2086–2090CrossRefPubMedGoogle Scholar
  3. 3.
    Duchaine D (1984) The underground steroid handbook. HLR Technical Books, VeniceGoogle Scholar
  4. 4.
    Toogood AA, O’Neill PA, Shalet SM (1996) Beyond the somatopause: growth hormone deficiency in adults over the age of 60 years. J Clin Endocrinol Metab 81(2):460–465PubMedGoogle Scholar
  5. 5.
    Domené HM, Hwa V, Jasper HG, Rosenfeld RG (2011) Acid-labile subunit (ALS) deficiency. Best Pract Res Clin Endocrinol Metab 25(1):101–113CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Rajah R, Valentinis B, Cohen P (1997) Insulin-like Growth Factor (IGF)-binding Protein-3 Induces Apoptosis and Mediates the Effects of Transforming Growth Factor-b1 on Programmed Cell Death through a p53- and IGF-independent Mechanism. J Biol Chem 272(18):12181–12188CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Redman LM, Ravussin E (2011) Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal 14(2):275–287CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Franceschi C, Campisi J (2014) Chronic Inflammation and its potential contributor to age associated diseases. J Gerontol A Biol Sci 69(Suppl1):4–9CrossRefGoogle Scholar
  9. 9.
    Vottero A, Guzzetti C, Loche S (2013) New aspects of the physiology of the GH-IGF-1 axis. Endocr Dev 24:96–105.  https://doi.org/10.1159/000342573 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rudman D, Kutner, Rogers MHCM et al (1981) Impaired growth hormone secretion in the adult population: relation to age and adiposity. J Clin Invest 67(5):1361–1369CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Abbasi AA, Drinka PJ, Mattson DE et al (1993) Low circulating levels of insulin-like growth factors and testosterone in chronically institutionalized elderly men. J Am Geriatric Soc 41(9):975–982CrossRefGoogle Scholar
  12. 12.
    Heiman M, Tinsley F, Mattison J, Hauck S, Bartke A (2003) Body composition of prolactin-, growth hormone- and thyrotropin—deficient ames dwarf mice. Endocrine 20:149–154CrossRefPubMedGoogle Scholar
  13. 13.
    Bonkowski MS, Pamenter RW, Rocha JS, Masternak MM, Panici JA, Bartke A (2006) Long-lived growth hormone receptor knockout mice show a delay in age related changes of body composition and bone characteristics. J Gerontol A Biol Sci Med Sci 61:562–567CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Koizumi AWY, Tuskada M, Kayo T et al (1996) A tumor preventive effect of dietary restriction is antagonized by a high housing temperature through deprivation of torpor. Mech Ageing Dev 92:67–82CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Kimura KD, Tissenbaum HA, Lin Y, Rufkum G (1997) daf-2 an Insulin receptor like gene, that regulates longevity and diapause in Caenorhabdis elegans. Science 277:942–946CrossRefGoogle Scholar
  16. 16.
    Janetzka A et al (2016) Clinical and molecular features of laron syndrome, a genetic disorder protecting from cancer. In Vivo (Brooklyn) 30(4):375–381Google Scholar
  17. 17.
    Francheschi C, Olivieri F, Marchegiani F et al (2005) Genes involved in immune response-inflammation, IGFß1-insulin pathway and response to oxidative stress play a major role in the genetic of human longevity : the lesson of centenarians. Mech Ageing Dev 126:351–361CrossRefGoogle Scholar
  18. 18.
    Deepak DDC, Javadpur M, Clark D, Perrz Z, Pinbkjnez J, Macfarlane IA (2010) The influence of growth hormone replacement on peripheral inflammatory and cardiovascular risk markers in adults with severe growth hormone deficiency. Growth Horm IGF Res 20:220–225CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Yi CCI, Mao SH, Liu H et al (2009) Recombinant human growth hormone improves survival and protect against acute lung injury in murine Staphylococcus aureus sepsis. Inflamm Res 58:855–862CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Lihn AS, Pedersen SB, Richelsen B (2005) Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev 6(1):13–21CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Wang Z, Masternak MM, Al-Regaiey KA, Bartke A (2007) Adipocytokines and the regulation of lipid metabolism in growth hormone transgenic and caloric restricted mice. Endocrinology 148:2845–2853CrossRefPubMedGoogle Scholar
  22. 22.
    Wang Z, Al-Regaiey KA, Masternak MM, Bartke A (2006) Adipocytokines and lipid levels in Ames dwarf and caloric restricted mice. J Gerontol A Biol Sci Med Sci 61A:323–331CrossRefGoogle Scholar
  23. 23.
    Ratajczak MZ et al (2008) Very small embryonic like (VSEL) stem cells—characterization, development origin and biological significance. Exp Haematol 36(6):742–751.  https://doi.org/10.1016/j.exphem.2008.03.010 CrossRefGoogle Scholar
  24. 24.
    Bartke A, Westbrook R, Ratajczak M (2013) Links between growth hormone and aging. Endokrynol Pol 64:46–52PubMedPubMedCentralGoogle Scholar
  25. 25.
    Ratajczak MZ, Zuba-Sturma EK, Wysoczynski M et al (2008) Hunt for pluripotent stem cells-regenerative medicine search for almighty cell. J Autoimmun 30:151–162CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Guevarra-Aguirre J, Balasubramaniam P et al (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3:70ra13CrossRefGoogle Scholar
  27. 27.
    Ratajczak MZ, Shin DM, Wan W et al (2011) Higher number of stem cells in bone marrow of circulating low IGF-1 level Laron dwarf mouse-novel view on IGF-1 stem cells and aging. Leukemia 25:729–733CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Kucia M, Masternak MM, Liu R et al (2013) The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow residing population of very pluripotent very small embryonic-like stem cells (VSELs). Age 35(2):315.  https://doi.org/10.1007/s11357-011-9364-8 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Brugts MP, van der Beld AW (2008) Hofland LJ net al. Low circulating insulin-like growth factor −1 bioactivity in elderly men is associated with increased mortality. J Clin Endocrinol Metab 93(7):2515–2522CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Laron Z (2004) Laron syndrome (primary growth hormone resistance or insensitivity): the personal experience 1958–2003. J Clin Endocrinol Metab 89(3):1031–1044CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Major MJ, Laughlin GA, Kritz-Silverstein D, Wingard DL, Barret-Connor E (2010) Insulin-like growth factor 1 and cancer mortality in older men. J Clin Endocrinol Metab 95(3):1054–1059CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Sonksen P (2013) Idiopathic growth hormone deficiency in adults, Ben Johnson and the somatopause. J Clin Endocrinol Metab 98(6):2270–2273CrossRefPubMedGoogle Scholar
  33. 33.
    https://www.alz.org/facts/. Zugegriffen: Januar 2018
  34. 34.
    Johnson MD, Bebb RA, Sirrs SM (2002) Uses of DHEA in aging and other disease states. Ageing Res Rev 1(1):29–41CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Suh Y, Atzmon G, Cho MO et al (2008) Functionally significant IGF-1 receptor mutations in centenarians. Proc Nat Acad Sci USA 105(9):3438–3442CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Bartke A, Brown-Borg H, Kinney B, Mattison J, Wright C, Hauck St, Coschiogano K, Kopchick J (2000) Growth hormone and aging. J Am Aging Assoc 23(4):219–225PubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhang H, Han M, Zhang X, Sun X, Ling F (2014) The effect and mechanism of growth hormone replacement on cognitive function in rats with traumatic brain injury. PLoS ONE 9(9):e108518CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Deak F, Sonntag WE (2012) Aging, synaptic dysfunction and insulin growth factor (IGF)-1. J Gerontol A Biol Sci Med Sci 67(6):611–625CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Baker LD, Barsness SM, Borson S et al (2012) Effects of growth hormone releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults. Arch Neurol 69(11):1420–1429CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Rizzoli R, Bonjour JP (1999) Malnutrition and osteoporosis. Z Gerontol Geriatr 32(Suppl 1):I31–7CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Vaessen N, Heutink P, Janssen JA, Witteman JC, Testers L, Hofman A, Lamberts SW, Oostra BA, Pols HA, van Duijn CM (2001) A polymorphism in the gene for IGF-I: functional properties and risk for type 2 diabetes and myocardial infarction. Diabetes 50(3):637–642CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Colao A, Marzullo P, Di Somma C, Lombardi G (2001) Growth hormone and the heart. Clin Endocrinol 54(2):137–154CrossRefGoogle Scholar
  43. 43.
    Menezes Oliveira JL, Marques Santos C, Barreto-Filho JA et al (2006) Lack of evidence of premature atherosclerosis in untreated severe isolated growth hormone (GH) deficiency due to a GH-releasing hormone receptor mutation. J Clin Endocrinol Metab 91(6):2093–2099CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Van Bunderen CC, van Nieuwpoort IC, Arwert L et al (2011) Does Growth hormone replacement therapy reduce mortality in adults with GH deficiency? Data from the Dutch registry of GF treatment b in adults. J Clin Endocrinol Metab 96(10):3151–3159CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Janssen JA, Stolk RP, Pols HA, Grobbee DE, Lamberts SW (1998) Serum total IGF-I, free IGF-I, and IGFB-1 levels in an elderly population: relation to cardiovascular risk factors and disease. Arterioscler Thromb Vasc Biol 18(2):277–282CrossRefPubMedGoogle Scholar
  46. 46.
    Aguirre GA, De Ita JR, de la Garza RG, Castilla-Cortazar I (2016) Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med 14(1):3CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Baumgartner RN (2000) Body composition in healthy aging. Ann N Y Acad Sci 904:437–448CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Grimberg A, DiVall SA, Polychronakos C, Allen DB, Cohen LE, Quintos JB, Rossi WC, Feudtner C, Murad MH (2016) Guidelines for Growth Hormone and Insulin-Like Growth Factor-I Treatment in Children and Adolescents: Growth Hormone Deficiency, Idiopathic Short Stature, and Primary Insulin-Like Growth Factor-I Deficiency. Horm Res Paediatr 86:361–397CrossRefPubMedGoogle Scholar
  49. 49.
    Milne AC, Potter J, Vivanti A, Avenell A (2009) Protein and energy supplementation in elderly people at risk from malnutrition. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD003288.pub3 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Vandewoude MFJ, Alish AJ, Sauer AC, Hegazi RA (2012) Malnutrition—sarcopenia syndrome: is this the future of Nutritionn screening and assessment for older adults? J Aging Res 2012:Article 651570CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Walston JD (2012) Sarcopenia in older adults. Curr Opin Rheumatol 24(6):623–627CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Castellano G, Affuso F, Conza PD, Fazio S (2009) The GH/IGF-1 axis and heart failure. Curr Cardiol Rev 5(3):203–215.  https://doi.org/10.2174/157340309788970306 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR (2001) Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J Clin Endocrinol Metab 86:724–731CrossRefPubMedCentralGoogle Scholar
  54. 54.
    Mellstrom D, Johnell O, Ljunggren O et al (2006) Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden. J Bone Miner Res 21:529–535CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Morrison JH, Brinton RD et al (2006) Estrogen, menopause, and the aging brain: how basic neuroscience can inform hormone therapy in women. J Neurosci 4(1):10332–10348CrossRefGoogle Scholar
  56. 56.
    Wend K, Wend P, Krum S (2012) Tissue specific effects of loss of estrogens during menopause and aging. Front Endocrinol 3:19CrossRefGoogle Scholar
  57. 57.
    Baulieu EE et al (2000) Dihydroepiandrosterone(DHEA), DHEA-sulfate, and aging : contribution of the DHEAge study to sociobiomedical issue. Proc Natl Acad Sci USA 97(8):4279–4284CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Park S, Ham JO, Lee BK (2014) A positive association of vitamin D deficiency and sarcopenia in 50 year old women, but not men. Clin Nutr 33(5):900–905CrossRefPubMedGoogle Scholar
  59. 59.
    Bartali B, Frongillo EA, Bandinelli S, Lauretani F, Semba RD, Fried LP (2006) Low nutrient intake is an essential component of frailty in older persons. J Gerontol A Biol Sci Med Sci 61:589–593CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Houston DK, Nicklas BJ, Ding JZ, Harris TB, Tylavsky FA, Newman AB (2008) Dietary intake is associated with lean mass change in older community-dwelling adults: the health aging and body composition (The Health ABC Study) study. Am J Clin Nutr 87:150–155CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Burton LA, Sumukadas D (2010) Optimal management of sarcopenia. Clin Interv Aging 5:217–228PubMedPubMedCentralGoogle Scholar
  62. 62.
    Short KR, Vittone J, Bigelow ML, Proctor DN, Nair KS (2004) Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab 286(1):E92–E101CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Frankel JE, Bean JF, Frontera WR (2006) Exercise in the elderly: research and clinical practice. Clin Geriatr Med 22:256CrossRefGoogle Scholar
  64. 64.
    Sipila S, Suominen H (1995) Effects of strength and endurance training on thigh and leg muscle mass and composition in elderly women. J Appl Physiol 78:334–340CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Fiatarone MA, O’Neill EF, Ryan ND et al (1994) Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 330:1769–1775CrossRefPubMedGoogle Scholar
  66. 66.
    Miljkovic N, Lim J‑Y, Miljkovic I, Frontera WR (2015) Aging of skeletal muscle fibers. Ann Rehabil Med 39(2):155–162CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Ferder L, Romano LA, Ercole LB, Stella I, Inserra F (1998) Biomolecular changes in the aging myocardium—the effect of enalapril. Am J Hypertens 11:1297–1304CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Maggio M, Ceda GP, Lauretani F et al (2006) Relation of angiotensinconverting enzyme inhibitor treatment to insulin-like growth factor-1 serum levels in subjects .65 years of age (the InCHIANTI study). Am J Cardiol 97:1525–1529CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Bischoff HA, Borchers M, Gudat F et al (2001) In situ detection of 1,25-dihydroxyvitamin D‑3 receptor in human skeletal muscle tissue. Histochem J 33:19–24CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Ziambaras K, DagogoJack S (1997) Reversible muscle weakness in patients with vitamin D deficiency. West J Med 167:435–439PubMedPubMedCentralGoogle Scholar
  71. 71.
    Visser M, Deeg DJH, Lips P (2003) Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (Sarcopenia): the longitudinal aging study Amsterdam. J Clin Endocrinol Metab 88:5766–5772CrossRefGoogle Scholar
  72. 72.
    Annweiler C, Beauchet O, Berrut G et al (2009) Is there an association between serum 25-hydroxyvitamin D concentration and muscle strength among older women? Results from baseline assessment of the EPIDOS study. J Nutr Health Aging 13:90–95CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Griggs RC, Kingston W, Jozefowicz RF, Herr BE, Forbes G, Halliday D (1989) Effect of testosterone on muscle mass and muscle protein synthesis. J Appl Physiol 66:489–503CrossRefGoogle Scholar
  74. 74.
    Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, Zheng W, Bhasin S (2004) Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. Endocrinol Metab 89:5255CrossRefGoogle Scholar
  75. 75.
    Srinivas-Shankar U, Roberts SA, Connolly MJ et al (2010) Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 95:639–650CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Urban RJ, Bodenburg YH, Gilkison C et al (1995) Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol 269:E820–E826PubMedPubMedCentralGoogle Scholar
  77. 77.
    Greeves JP, Cable NT, Reilly T, Kingsland C (1999) Changes in muscle strength in women following the menopause: a longitudinal assessment of the efficacy of hormone replacement therapy. Clin Sci 97:79–84CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Dionne I (2000) Sarcopenia and muscle function during menopause and hormone replacement therapy. J Nutr Health Aging 4:156–161PubMedPubMedCentralGoogle Scholar
  79. 79.
    Taaffe DR (2005) Estrogen replacement, muscle composition and physical function: the health ABC study. Med Sci Sports Exerc 37:174–177CrossRefGoogle Scholar
  80. 80.
    Sipila S (2001) Effects of hormone replacement therapy and high impact physical exercise on skeletal muscle in post-menopausal women; a double randomized placebo controlled study. Clin Sci 101:147–151CrossRefPubMedCentralPubMedGoogle Scholar
  81. 81.
    Velloso CP (2008) Regulation of muscle mass by growth hormone and IGF-1. Br J Pharmacol 154:557–568CrossRefPubMedCentralPubMedGoogle Scholar
  82. 82.
    Elbornsson M et al (2013) Fifteen years of GH replacement improves body composition and cardiovascular risk factors. Eur J Endocrinol 168(5):745–753CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    Goetherstroem G, Bengtson BA, Sunnerhagen KS, Johannson G, Svensson J (2005) The effects of five year growth hormone replacement therapy on muscle strength in elderly hypopituitary patients. Clin Endocrinol 62(1):105–113CrossRefGoogle Scholar
  84. 84.
    Elbornsson M, Horvath A, Götherström G, Bengtsson BÅ, Johannsson G, Svensson J (2017) Seven years of growth hormone (GH) replacement improves quality of life in hypopituitary patients with adult-onset GH deficiency. Eur J Endocrinol 176(2):99–109CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Alexopoulou O, Abs R, Maiter D (2010) Treatment of adult growth hormone deficiency: who, why and how? A review. Acta Clin 65(1):13–22CrossRefGoogle Scholar
  86. 86.
    Hameed M, Lange KHW et al (2004) The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. J Physiol 555(Pt1):231–140CrossRefPubMedCentralPubMedGoogle Scholar
  87. 87.
    Godfrey RJ, Madgwick Z, Whyte GP (2003) The exercise induced growth hormone response in athletes. Sports Med 33(8):599–613CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Craig BW, Brown R et al (1989) Effects of progressive resistance training on growth hormone and testosterone levels in young and elderly subjects. Mech Ageing Dev 49(2):159–169CrossRefPubMedCentralPubMedGoogle Scholar
  89. 89.
    Taaffe DR, Pruitt L, Reim J et al (1994) Effect of recombinant human growth hormone on the muscle strength response to resistance exercise in elderly men. J Clin Endocrinol Metab 79:1361–1366PubMedPubMedCentralGoogle Scholar
  90. 90.
    Lange KHW, Andersen JL, Beyer N et al (2002) GH administration changes myosin heavy chain isoforms in skeletal muscle but does not augment muscle strength or hypertrophy, either alone or combined with resistance exercise training in healthy elderly men. J Clin Endocrinol Metab 87:513–523CrossRefPubMedCentralPubMedGoogle Scholar
  91. 91.
    Ayling CM, Moreland BH, Zanelli JM, Schulster D (1989) Human growth hormone treatment of hypophysectomized rats increases the proportion of type-1 fibres in skeletal muscle. J Endocrinol 123:429–435CrossRefPubMedCentralPubMedGoogle Scholar
  92. 92.
    Nishiyama K, Sugimoto T, Kaji H, Kanatani M, Kobayashi T, Chihara K (1996) Stimulatory effect of growth hormone on bone resorption and osteoclast differentiation. Endocrinology 137(1):35–41CrossRefPubMedCentralPubMedGoogle Scholar
  93. 93.
    Ohlsson C, Bengtsson BA, Isaksson OG, Andreassen TT, Slootweg MC (1998) Growth hormone and bone. Endocr Rev 19(1):55–79PubMedGoogle Scholar
  94. 94.
    Wüster C, Abs R, Bengtsson BA, Bennmarker H et al (2001) The influence of growth hormone deficiency, growth hormone replacement therapy, and other aspects of hypopituitarism on fracture rate and bone mineral density. J Bone Miner Res 16(2):398–405CrossRefPubMedGoogle Scholar
  95. 95.
    Locatelli V, Bianchi VE (2014) Effect of GH/IGF-1 on bone metabolism and osteoporosis. Int J Endocrinol.  https://doi.org/10.1155/2014/235060 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Mo D, Fleseriu M, Qi R et al (2015) Fracture risk in adult patients treated with Growth Hormone replacement therapy for growth hormone deficiency: a prospective observational cohort study. Lancet 3:331–338PubMedPubMedCentralGoogle Scholar
  97. 97.
    Bl H, Berg C, Vogel E, Nowak T, Renzig-Koehler K, Mann K, Saller B (2004) Effects of a combination of recombinant human growth hormone with metformin on Glucose metabolism and body composition in patients with metabolic syndrome. Horm Metab Res 36(1):54–61CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Ukrida UniversityJakartaIndonesien

Personalised recommendations