Advertisement

Fieberhafter Harnwegsinfekt im Kindesalter

Ist eine invasive Diagnostik immer notwendig?
  • Justus KönigEmail author
  • Bernhard Haid
  • Josef Oswald
Originalien
  • 15 Downloads

Zusammenfassung

Harnwegsinfekte im Kindesalter sind ein ernst zu nehmendes Erkrankungsbild. Abgesehen von der Akutmorbidität, welche häufig eine stationäre Krankenhausbehandlung notwendig macht, können sie zu langfristigen Nierenfunktionseinschränkungen führen. Insbesondere der Harnwegsinfekt im Säuglingsalter und der rezidivierende fieberhafte Harnwegsinfekt des Kindes sollten besondere Beachtung hinsichtlich der langfristigen Einschränkung der Nierenfunktion finden. Die Indikation für eine weiterführende Diagnostik sollte einer sinnvollen Prüfung unterzogen werden. Fehlbildungen des Harntraktes in Kombination mit fieberhaften Harnwegsinfekten stellen einen relevanten Risikofaktor für die Entstehung einer späteren dialysepflichtigen Niereninsuffizienz dar. Zur primären Diagnostik eines Harnwegsinfekts zählen neben Anamnese und klinischer Untersuchung die adäquate Urin- sowie Laboruntersuchung und eine Sonographie der Harnorgane. Eine weiterführende Abklärung ist bei anatomischen Auffälligkeiten oder einem gesicherten fieberhaften Harnwegsinfekt indiziert und besteht, je nach Alter des Kindes und Befundkonstellation, primär entweder aus einem Miktionszystourethrogramm oder einer statischen Nierenszintigraphie. Diese Untersuchungen können einen relevanten vesikoureteralen Reflux, mögliche assoziierte Risikofaktoren und/oder eine bereits bestehende Nierenparenchymschädigung feststellen. Diese Information ist zur Entscheidung über eine weitere Behandlung, ggf. inklusive antibiotischer Prophylaxe oder operativer Behandlung, zur Verhinderung weiterer Harnwegsinfekte und einer möglichen dauerhaften Nierenfunktionseinschränkung essenziell.

Schlüsselwörter

Fieberhafter Harnwegsinfekt Kind Invasive Diagnostik MCU Nierenfunktionseinschränkung 

Febrile urinary tract infections in children

Are invasive diagnostics always necessary?

Abstract

Urinary tract infections (UTI) in childhood are a serious illness concerning acute morbidity, inpatient hospital treatment and—ultimately—their association with end-stage renal disease. The indication for further, more invasive diagnostics should be subjected to a critical review. Congenital anomalies of the urinary system in combination with febrile urinary infections are a relevant risk factor for the development of renal disease. In addition to patient history and clinical examination, the primary diagnosis of a urinary tract infection includes appropriate urine and laboratory examination and a urologic sonography. Further investigation is indicated in the presence of anatomical abnormalities or after a confirmed, clinically relevant febrile urinary tract infection. Further diagnostic workup primarily includes voiding cystourethrography and/or a dimercaptosuccinic acid (DMSA) scan. After assessment of relevant vesicoureteral reflux and/or renal parenchyma damage, the decision of further surgical treatment can be made to prevent further UTIs and renal disease.

Keywords

Febrile urinary tract infection Pediatrics Invasive diagnostics Voiding cystourethrography End-stage renal disease 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. König, B. Haid und J. Oswald geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

Verwendete Literatur

  1. 1.
    Mårild S, Jodal U (1998) Incidence rate of first-time symptomatic urinary tract infection in children under 6 years of age. Acta Paediatr 87:549–552CrossRefGoogle Scholar
  2. 2.
    Shaikh N, Morone NE, Bost JE, Farrell MH (2008) Prevalence of urinary tract infection in childhood. Pediatr Infect Dis J 27:302–308.  https://doi.org/10.1097/INF.0b013e31815e4122 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jodal U, Winberg J (1987) Management of children with unobstructed urinary tract infection. Pediatr Nephrol 1:647–656CrossRefGoogle Scholar
  4. 4.
    Freedman AL, Urologic Diseases in America Project (2005) Urologic diseases in North America project: trends in resource utilization for urinary tract infections in children. J Urol 173:949–954.  https://doi.org/10.1097/01.ju.0000152092.03931.9a CrossRefPubMedGoogle Scholar
  5. 5.
    Morris BJ, Wiswell TE (2013) Circumcision and lifetime risk of urinary tract infection: a systematic review and meta-analysis. J Urol 189:2118–2124.  https://doi.org/10.1016/j.juro.2012.11.114 CrossRefPubMedGoogle Scholar
  6. 6.
    Crain EF, Gershel JC (1990) Urinary tract infections in febrile infants younger than 8 weeks of age. Pediatrics 86:363–367PubMedGoogle Scholar
  7. 7.
    Smith JM, Martz K, Blydt-Hansen TD (2013) Pediatric kidney transplant practice patterns and outcome benchmarks, 1987–2010: a report of the north American pediatric renal trials and collaborative studies. Pediatr Transplantation 17:149–157.  https://doi.org/10.1111/petr.12034 CrossRefGoogle Scholar
  8. 8.
    Calderon-Margalit R, Golan E, Twig G et al (2018) History of childhood kidney disease and risk of adult end-stage renal disease. N Engl J Med 378(5):428–438.  https://doi.org/10.1056/NEJMoa1700993 CrossRefPubMedGoogle Scholar
  9. 9.
    Oswald J (2017) Urosepsis in children. Aktuelle Urol 48:459–468.  https://doi.org/10.1055/s-0043-104506 CrossRefPubMedGoogle Scholar
  10. 10.
    Zorc JJ, Levine DA, Platt SL, Dayan PS, Macias CG, Krief W et al (2005) Clinical and demographic factors associated with urinary tract infection in young febrile infants. Pediatrics 116:644–648.  https://doi.org/10.1542/peds.2004-1825 CrossRefPubMedGoogle Scholar
  11. 11.
    Struthers S, Scanlon J, Parker K et al (2003) Parental reporting of smelly urine and urinary tract infection. Arch Dis Child 88:250CrossRefGoogle Scholar
  12. 12.
    Davis D (2004) Bag urine specimens still not appropriate in diagnosing urinary tract infections in infants. Can J Infect Dis Med Microbiol 15:210–211CrossRefGoogle Scholar
  13. 13.
    Tosif S, Baker A, Oakley E et al (2012) Contamination rates of different urine collection methods for the diagnosis of urinary tract infections in young children: an observational cohort study. J Paediatr Child Health 48:659–664.  https://doi.org/10.1111/j.1440-1754.2012.02449.x CrossRefPubMedGoogle Scholar
  14. 14.
    Karacan C, Erkek N, Senel S, Akin Gunduz S, Catli G, Tavil B (2010) Evaluation of urine collection methods for the diagnosis of urinary tract infection in children. Med Princ Pract 19:188–191.  https://doi.org/10.1159/000273068 CrossRefPubMedGoogle Scholar
  15. 15.
    Tosif S, Kaufman J, Fitzpatrick P, Hopper SM, Hoq M, Donath S, Babl FE (2017) Clean catch urine collection: time taken and diagnostic implication. A prospective observational study. J Paediatr Child Health 53:970–975.  https://doi.org/10.1111/jpc.13595 CrossRefPubMedGoogle Scholar
  16. 16.
    Vaillancourt S, McGillivray D, Zhang X et al (2007) To clean or not to clean: effect on contamination rates in midstream urine collections in toilet-trained children. Pediatrics 119:e1288–93CrossRefGoogle Scholar
  17. 17.
    Beetz R, Bachmann H, Gatermann S et al (2007) Urinary tract infections in infants and children—a consensus on diagnostic, therapy and prophylaxis. Urologe A 46(2):112–123CrossRefGoogle Scholar
  18. 18.
    Shaikh N, Borrell JL, Evron J, Leeflang MMG (2015) Procalcitonin, C‑reactive protein, and erythrocyte sedimentation rate for the diagnosis of acute pyelonephritis in children. Cochrane Database Syst Rev 1(4):CD9185.  https://doi.org/10.1002/14651858.CD009185.pub2 CrossRefPubMedGoogle Scholar
  19. 19.
    Koyle MA, Elder JS, Skoog SJ et al (2011) Febrile urinary tract infection, vesicoureteral reflux, and renal scarring: current controversies in approach to evaluation. Pediatr Surg Int 27:337–346.  https://doi.org/10.1007/s00383-011-2863-y CrossRefPubMedGoogle Scholar
  20. 20.
    Winberg J, Andersen HJ, Bergström T, Jacobsson B, Larson H, Lincoln K (1974) Epidemiology of symptomatic urinary tract infection in childhood. Acta Paediatr Scand Suppl 252:1–20CrossRefGoogle Scholar
  21. 21.
    Coleman R (2011) Early management and long-term outcomes in primary vesico-ureteric reflux. BJU Int 108:3–8.  https://doi.org/10.1111/j.1464-410X.2011.10698.x CrossRefPubMedGoogle Scholar
  22. 22.
    Edwards A, Peters CA (2019) Managing vesicoureteral reflux in children: making sense of all the data. F1000Res 8:F1000 Faculty Rev-29.  https://doi.org/10.12688/f1000research.16534.1 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sastre JB, Aparicio AR, Cotallo GD et al (2007) Urinary tract infection in the newborn: clinical and radio imaging studies. Pediatr Nephrol 22(10):1735–1741CrossRefGoogle Scholar
  24. 24.
    Preda I, Jodal U, Sixt R et al (2010) Value of ultrasound in evaluation of infants with first urinary tract infection. J Urol 183(5):1984–1988CrossRefGoogle Scholar
  25. 25.
    Bush NC, Keays M, Adams C et al (2015) Renal damage detected by DMSA, despite normal renal ultrasound, in children with febrile UTI. J Pediatr Urol 11(126):e1–126.e7Google Scholar
  26. 26.
    Sargent MA (2000) What is the normal prevalence of vesicoureteral reflux? Pediatr Radiol 30(9):587–593CrossRefGoogle Scholar
  27. 27.
    Riccabona M (2002) Cystography in infants and children: a critical appraisel of the many forms with special regard to voiding cystourethrography. Eur Radiol 12(12):2910–2918CrossRefGoogle Scholar
  28. 28.
    Subcommittee on Urinary Tract Infection, Steering Committee on Quality Improvement and Management, Roberts KB (2011) Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics 128(3):595–610CrossRefGoogle Scholar
  29. 29.
    Shaikh N, Haralam MA, Kurs-Lasky M, Hoberman A (2019) Association of renal scarring with number of febrile urinary tract infections in children. JAMA Pediatr 173(10):949–952.  https://doi.org/10.1001/jamapediatrics.2019.2504 CrossRefGoogle Scholar
  30. 30.
    Frimberger D, Mercado-Deane MG (2016) AAP section on urology, AAP section on radiology. Establishing a standard protocol for the voiding cystourethrography. Pediatrics 138(5):e20162590CrossRefGoogle Scholar
  31. 31.
    Chua ME, Kim JK, Mendoza JS, Fernandez N, Ming JM, Marson A, Lorenzo AJ, Takahashi MS (2019) The evaluation of vesicoureteral reflux among children using contrast-enhanced ultrasound: a literature review. J Pediatr Urol 15(1):12–17CrossRefGoogle Scholar
  32. 32.
    Haid B, Becker T, Koen M, Berger C, Langsteger W, Gruy B, Putz E, Haid S, Oswald J (2015) Lower radiation burden in state of the art fluoroscopic cystography compared to direct isotope cystography in children. J Pediatr Urol 11(1):35.e1–35.e6.  https://doi.org/10.1016/j.jpurol.2014.08.015 CrossRefGoogle Scholar
  33. 33.
    Lee RS, Diamond DA, Chow JS (2006) Applying the ALARA concept to the evaluation of vesicoureteric reflux. Pediatr Radiol 36(2):185–191CrossRefGoogle Scholar
  34. 34.
    Johnin K, Kobayashi K, Tsuru T, Yoshida T, Kageyama S, Kawauchi A (2018) Pediatric voiding cystourethrography: an essential examination for urologists but a terrible experience for children. Int J Urol 15(2):105–112.  https://doi.org/10.1111/iju.13881 CrossRefGoogle Scholar
  35. 35.
    Kis É, Nyitrai A, Várkonyi I et al (2010) Voiding urosonography with second-generation contrast agent versus voiding cystourethrography. Pediatr Nephrol 25(11):2289–2293.  https://doi.org/10.1007/s00467-010-1618-7 CrossRefPubMedGoogle Scholar
  36. 36.
    Schober JM, Dulabon LM, Woodhouse CR (2004) Outcome of valve ablation in late-presenting posterior urethral valves. BJU Int 94:616–619.  https://doi.org/10.1111/j.1464-410X.2004.05011.x CrossRefPubMedGoogle Scholar
  37. 37.
    Özen MA, Taşdemir M, Gündoğdu G et al (2019) Does voiding cystourethrogram exclude posterior urethral valves in late presenting cases? Eur J Pediatr Surg 29:85–89.  https://doi.org/10.1055/s-0038-1672146 CrossRefPubMedGoogle Scholar
  38. 38.
    Gelfand MJ, Clements C, MacLean JR (2017) Nuclear medicine procedures in children_ special considerations. Semin Nucl Med 47:110–117CrossRefGoogle Scholar
  39. 39.
    Pintelon H, Jonckheer MH, Piepsz A (1994) Paediatric nuclear medicine procedures: routine sedation or management of anxiety? Nucl Med Commun 15:664–666CrossRefGoogle Scholar
  40. 40.
    Coulthard MG, Lambert HJ, Vernon SJ, Hunter EW, Keir MJ (2014) Guidelines to identify abnormalities after childhood urinary tract infections: a prospective audit. Arch Dis Child 99(5):448–451.  https://doi.org/10.1136/archdischild-2013-304429 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Berger C, Becker T, Koen M et al (2013) Positioning irrigation of contrast cystography for diagnosis of occult vesicoureteric reflux: association with technetium-99m dimercaptosuccinic acid scans. J Pediatr Urol 9(6):846–850.  https://doi.org/10.1016/j.jpurol.2012.11.010 CrossRefPubMedGoogle Scholar
  42. 42.
    Cheng EY (2009) PIC cystography: an effective test for the diagnosis of clinically significant occult reflux. J Urol 182(4):1264–1265PubMedGoogle Scholar

Weiterführende Literatur

  1. 43.
    Stein R, Dogan HS, Hoebeke P et al (2015) Urinary tract infections in children: EAU/ESPU guidelines. Eur Urol.  https://doi.org/10.1016/j.eur-uro.2014.11.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Abteilung für UrologieAsklepios Stadtklinik Bad TölzBad TölzDeutschland
  2. 2.Abteilung für KinderurologieOrdensklinikum Linz, Krankenhaus der Barmherzigen SchwesternLinzÖsterreich

Personalised recommendations