Advertisement

Störungen des Phosphathaushalts

  • Karl LhottaEmail author
Originalien
  • 9 Downloads

Zusammenfassung

Der Serumphosphatspiegel wird in engen Grenzen durch Vitamin D, Parathormon und fibroblast growth factor-23 (FGF-23) reguliert. Von zentraler Bedeutung dabei ist die Phosphatrückresorption in proximalen Tubulusepithelien durch die Transporter NPT2a und c. Störungen der hormonellen Regulation oder der Transporter können sowohl eine Hypo- als auch eine Hyperphosphatämie verursachen. Zusätzlich können Verschiebungen zwischen intra- und extrazellulärem Raum sowie niedrige oder hohe intestinale Phosphataufnahme Änderungen des Serumphosphats bewirken. Eine schwere Hypophosphatämie führt zur zellulären Energiedepletion mit entsprechenden Symptomen. Die Therapie erfolgt üblicherweise durch orale Zufuhr. Eine parenterale Phosphatgabe sollte schweren Fällen vorbehalten und engmaschig überwacht werden. Eine schwere Hyperphosphatämie kann bei massiver Zytolyse oder exzessiver intestinaler Aufnahme entstehen. Die Symptome erklären sich durch eine konsekutive Hypokalzämie. Eine weitere gefürchtete Komplikation ist die akute Phosphatnephropathie mit Nierenversagen. Die schwere Hyperphosphatämie wird rasch und effektiv mittels Hämodialyse behandelt. Rezente Daten legen nahe, dass hochnormale Phosphatwerte mit einem erhöhten kardiovaskulären Risiko assoziiert sind.

Schlüsselwörter

Hypophosphatämie Hyperphosphatämie Vitamin D FGF-23 Parathormon Tubuläre Phosphatresorption 

Phosphate metabolism disorders

Abstract

Serum phosphate levels are tightly regulated by vitamin D, parathyroid hormone (PTH), and fibroblast growth factor-23 (FGF-23). In particular PTH and FGF-23 decrease renal phosphate reabsorption by proximal tubular epithelial cells via phosphate transporters NPT2a and c. Disturbances of hormone regulation or carrier function may cause hypo- or hyperphosphatemia. In addition, phosphate shifts between the intracellular and extracellular space or decreased or increased gastrointestinal phosphate uptake may cause these disturbances. Severe hypophosphatemia causes energy depletion of cells with consecutive symptoms. Hypophosphatemia is treated by oral phosphate supplementation. Intravenous phosphate therapy should be restricted to symptomatic cases. Severe hyperphosphatemia may occur with massive cytolysis or ingestion of excessive amounts of phosphate. Complications include hypocalcemia and renal failure due to acute phosphate nephropathy. If necessary, severe hyperphosphatemia needs to be treated by hemodialysis. Recent evidence suggests that high normal phosphate levels may be associated with increased cardiovascular risk.

Keywords

Hypophosphatemia Hyperphosphatemia Vitamin D FGF-23 Parathyroid hormone Tubular phosphate absorption 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

K. Lhotta gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Sabbagh Y, O’Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C et al (2009) Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol 20(11):2348–2358CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Walton RJ, Bijvoet OL (1975) Nomogram for derivation of renal threshold phosphate concentration. Lancet 2(7929):309–310CrossRefPubMedGoogle Scholar
  3. 3.
    Prie D, Urena Torres P, Friedlander G (2009) Latest findings in phosphate homeostasis. Kidney Int 75(9):882–889CrossRefPubMedGoogle Scholar
  4. 4.
    Ferrari SL, Bonjour JP, Rizzoli R (2005) Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 90(3):1519–1524CrossRefPubMedGoogle Scholar
  5. 5.
    Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K et al (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444(7120):770–774CrossRefPubMedGoogle Scholar
  6. 6.
    Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R et al (2009) FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 297(2):F282–F291CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Farrow EG, White KE (2010) Recent advances in renal phosphate handling. Nat Rev Nephrol 6(4):207–217CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH et al (2007) A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 117(9):2684–2691CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Araya K, Fukumoto S, Backenroth R, Takeuchi Y, Nakayama K, Ito N et al (2005) A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab 90(10):5523–5527CrossRefPubMedGoogle Scholar
  10. 10.
    Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M et al (2004) Mutations in GALNT3, encoding a protein involved in O‑linked glycosylation, cause familial tumoral calcinosis. Nat Genet 36(6):579–581CrossRefPubMedGoogle Scholar
  11. 11.
    Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S et al (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A 98(11):6500–6505CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Prie D, Friedlander G (2010) Genetic disorders of renal phosphate transport. N Engl J Med 362(25):2399–2409CrossRefPubMedGoogle Scholar
  13. 13.
    Schouten BJ, Hunt PJ, Livesey JH, Frampton CM, Soule SG (2009) FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J Clin Endocrinol Metab 94(7):2332–2337CrossRefPubMedGoogle Scholar
  14. 14.
    Sato K, Shiraki M (1998) Saccharated ferric oxide-induced osteomalacia in Japan: iron-induced osteopathy due to nephropathy. Endocr J 45(4):431–439CrossRefPubMedGoogle Scholar
  15. 15.
    Wolf M (2010) Forging forward with 10 burning questions on FGF23 in kidney disease. J Am Soc Nephrol 21(9):1427–1435CrossRefPubMedGoogle Scholar
  16. 16.
    Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A et al (2007) Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol 18(9):2600–2608CrossRefPubMedGoogle Scholar
  17. 17.
    Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM (2004) Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 15(8):2208–2218CrossRefPubMedGoogle Scholar
  18. 18.
    Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A et al (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359(6):584–592CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T et al (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121(11):4393–4408CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Travis SF, Sugerman HJ, Ruberg RL, Dudrick SJ, Delivoria-Papadopoulos M, Miller LD et al (1971) Alterations of red-cell glycolytic intermediates and oxygen transport as a consequence of hypophosphatemia in patients receiving intravenous hyperalimentation. N Engl J Med 285(14):763–768CrossRefPubMedGoogle Scholar
  21. 21.
    Tiosano D, Hochberg Z (2009) Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 27(4):392–401CrossRefPubMedGoogle Scholar
  22. 22.
    Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111(5):607–616CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Taylor BE, Huey WY, Buchman TG, Boyle WA, Coopersmith CM (2004) Treatment of hypophosphatemia using a protocol based on patient weight and serum phosphorus level in a surgical intensive care unit. J Am Coll Surg 198(2):198–204CrossRefPubMedGoogle Scholar
  24. 24.
    Subramanian R, Khardori R (2000) Severe hypophosphatemia. Pathophysiologic implications, clinical presentations, and treatment. Medicine (Baltimore) 79(1):1–8CrossRefGoogle Scholar
  25. 25.
    Carpenter TO, Whyte MP, Imel EA, Boot AM, Hogler W, Linglart A et al (2018) Burosumab therapy in children with X‑linked hypophosphatemia. N Engl J Med 378(21):1987–1998CrossRefPubMedGoogle Scholar
  26. 26.
    Beloosesky Y, Grinblat J, Weiss A, Grosman B, Gafter U, Chagnac A (2003) Electrolyte disorders following oral sodium phosphate administration for bowel cleansing in elderly patients. Arch Intern Med 163(7):803–808CrossRefPubMedGoogle Scholar
  27. 27.
    Markowitz GS, Stokes MB, Radhakrishnan J, D’Agati VD (2005) Acute phosphate nephropathy following oral sodium phosphate bowel purgative: an underrecognized cause of chronic renal failure. J Am Soc Nephrol 16(11):3389–3396CrossRefPubMedGoogle Scholar
  28. 28.
    Heher EC, Thier SO, Rennke H, Humphreys BD (2008) Adverse renal and metabolic effects associated with oral sodium phosphate bowel preparation. Clin J Am Soc Nephrol 3(5):1494–1503CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tonelli M, Curhan G, Pfeffer M, Sacks F, Thadhani R, Melamed ML et al (2009) Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation 120(18):1784–1792CrossRefPubMedGoogle Scholar
  30. 30.
    Foley RN, Collins AJ, Herzog CA, Ishani A, Kalra PA (2009) Serum phosphorus levels associate with coronary atherosclerosis in young adults. J Am Soc Nephrol 20(2):397–404CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dhingra R, Sullivan LM, Fox CS, Wang TJ, D’Agostino RB Sr., Gaziano JM et al (2007) Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med 167(9):879–885CrossRefPubMedGoogle Scholar
  32. 32.
    Parker BD, Schurgers LJ, Brandenburg VM, Christenson RH, Vermeer C, Ketteler M et al (2010) The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med 152(10):640–648CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Innere Medizin III (Nephrologie und Dialyse)Akademisches Lehrkrankenhaus FeldkirchFeldkirchÖsterreich

Personalised recommendations