Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biodegradable hybrid polymer composite reinforced with coconut shell and sweet date seed (Phoenix dactylifera) powder: a physico-mechanical study; part A

  • 155 Accesses

Abstract

Biodegradable hybrid composites were prepared by introducing hydrophilic organic fibres (coconut and date seed powder) into waste high-density polyethylene (WHDPE). Each hybrid polymer composite was prepared with different ratios of fibre loading of coconut shell/sweet date seed powder (5/25%, 10/25%, 15/15%, 20/10% and, 25/5%). 100% WHDPE without any filler was the control sample. The results showed that there was an increase in mechanical properties as the fibres were introduced in the WHDPE with sample 25/5% showing relatively higher superior mechanical properties due to the more crystalline densified structure of the coconut powder compared to the date seed powder. There was also a significant degree of biodegradation (de-polymerization) observed in the hybrid composites compared to WHDPE when they were exposed to the environment averaging at 1.4% per month compared to the WHDPE which averaged at 0.11% biodegradation per month. The results showed that the hybrids can be utilized for industrial and domestic applications and can also undergo biodegradation when disposed, indicating a more environmentally friendly substitute compared to WHDPE.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Fig. 7

References

  1. Abdul KHPS, Fizree HM, Jawaid M, Omar SA (2011) Preparation and characterization of nano-structured materials from oil palm ash: a bio-agricultural waste from oil palm mill. Bio-Resour 6(4):4537–4546

  2. Adhikary KB, Pang S, Stager MP (2008) Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos Part B Eng 39(2008):807–815. https://doi.org/10.1016/j.compositesb.2007.10.005

  3. Agarwal BD, Broutman LJ, Chandrashekhara K (2017) Analysis and performance of fiber composites, 3rd edn. Wiley, New York

  4. Alavudeen A, Rajini N, Karthikeyan S, Thiruchitrambalam M, Venkateshwaren N (2015) Mechanical properties of banana/kenaf Fiber-reinforced hybrid polyester composites: effect of woven fabric and random orientation. Mater Design 1980–2015(66):246–257

  5. Albertsson AC (1980) The shape of the biodegradation curve for low and high-density polyethenes in prolonged series of experiments. Eur Polym J 16(7):623–630

  6. Albertsson AC, Karlsson S (1990) The influence of biotic and abiotic environments on the degradation of polyethylene. Prog Polym Sci 15(2):177–192

  7. Albertsson AC, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18(1):73–87

  8. AlMaadeed MA, Nogellova Z, Micusık M, Novak I, Krupa I (2014) Mechanical, sorption and adhesive properties of composites based on low density polyethylene filled with date palm wood powder. Mater Design 53:29–37

  9. Anuar H, Zuraida A (2011) Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fibre. Compos Part B Eng 42:462–465

  10. Ares A, Bouza R, Pardo SG, Abad MJ, Barral L (2010) Rheological, mechanical and thermal behaviour of wood polymer composites based on recycled polypropylene. J Polym Environ 18(3):318–325. https://doi.org/10.1007/s10924-010-0208-x

  11. Arnaud R, Moisan JY, Lemaire J (1984) Primary hydroperoxidation in low-density polyethylene. Macromolecules 17(3):332–336

  12. Ashori A (2010) Hybrid composites from waste materials. J Polym Env 18(1):65–70. https://doi.org/10.1007/s10924-009-0155-6

  13. Ashori A (2013) Effects of nanoparticles on the mechanical properties of rice straw/polypropylene composites. J Compos Mater 47(2):149–154. https://doi.org/10.1177/0021998312437234

  14. Ashori A, Nourbakhsh A (2008) A comparative study on mechanical properties and water absorption behavior of fiber-reinforced polypropylene composites prepared by OCC fiber and aspen fiber. Polym Compos 29(5):574–578. https://doi.org/10.1002/pc.20582

  15. Ashori A, Sheshmani S (2010) Hybrid composites made from recycled materials: moisture absorption and thickness swelling behavior. Biores Technol 101(12):4717–4720. https://doi.org/10.1016/j.biortech.2010.01.060

  16. Atiqah AASM, Salmah H, Firuz Z, Lan DNU (2014) The effect of blend ratio on properties of recycled polypropylene/recycled high density polyethylene Geo- composites. Malays J Anal Sci 18(2):344–350

  17. Ayrilmis N, Kaymakci A, Akbulut T, Elmas MG (2012) Mechanical performance of composites based on wastes of polyethylene aluminum and lignocellulosics. Compos Part B 47(2013):150–154

  18. Bhaskar J, Singh VK (2013) Physical and mechanical properties of coconut shell particle reinforced-epoxy composite. J Mater Env Sci 4(1):113–116. https://www.jmaterenvironsci.com/Document/vol4/vol4_N2/28-JMES-323-2011-Bhaskar.pdf

  19. Bifani P (1985) Environmental technology for developing countries. In: Curi K (ed) Appropriate waste management for developing countries. Springer, Boston, pp 1–30. https://doi.org/10.1007/978-1-4613-2457-7_1

  20. Bledzki AK, Faruk O (2003) Wood fibre reinforced polypropylene composites. Appl Compos Mater 10:365–379

  21. Cacciari I, Quatrini P, Zirletta G, Mincione E, Vinciguerra V, Lupatelli P, Sermanni GG (1993) Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Appl Environ Microbiol 59(11):3695–3700

  22. Chiellini E, Corti A, Swift G (2003) Biodegradation of thermally oxidized, fragmented low-density polyethylenes. Polym Degrad Stab 81(2):341–351

  23. Dan-asabe B (2016) Thermo-mechanical characterization of banana particulate reinforced PVC composite as piping material. J King Saud Univ Eng Sci 30(4):296–304. https://doi.org/10.1016/j.jksues.2016.11.001

  24. De Rosa IM, Santali C, Sarasini F (2010) Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated phormium tenax leaf fibers. Mater Des 31:2397–2405

  25. Devi R, Kannan V, Natarajan K, Nivas D, Kannan K, Chandru S, Antony A (2015) The role of microbes in plastic degradation. Env Waste Manag. https://doi.org/10.1201/b19243-13

  26. Dong C, Davies IJ (2012) Flexural properties of macadamia nutshell particle reinforced polyester composites. Compos Part B 43(2012):2751–2756. https://doi.org/10.1016/j.compositesb.2012.04.035

  27. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

  28. Feng Daan, Caulfield DF, Sanadi AR (2001) Effect of compatibilizer on the structure–property relationships of kenaf fiber/polypropylene composites. J Polym Compos 22(4):506–517

  29. Frackowiak S, Ludwiczak J, Leluk K (2018) Man-made and natural fibres as a reinforcement in fully biodegradable polymer composites: a concise study. J Polym Environ 26(12):4360–4368. https://doi.org/10.1007/s10924-018-1301-9

  30. George J, Bhagawan S, Thomas S (1998) Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre. Compos Sci Technol 58:1471–1485

  31. Goheen SM, Wool RP (1991) Degradation of Polyethylene starch blends in soil. J Appl Polym Sci 42(10):2691–2701

  32. Griffin GJL (1994) Starch polymer blends. Polym Degrad Stab 45(2):241–247

  33. Gugumus F (1995) Reexamination of the role of hydroperoxides in polyethylene and polypropylene—chemical and physical aspects of hydroperoxides in polyethylene. Polym Degrad Stab 49(1):29–50

  34. Hakkarainen M, Albertsson A (2004) Environmental degradation of polyethylene. Adv Polym Sci 169:177–199. https://doi.org/10.1007/b13523

  35. Hamouda T, Hassanin AH, Saba N, Demirelli M, Kilic A, Candan Z, Jawaid M (2019) Evaluation of mechanical and physical properties of hybrid composites from food packaging and textiles wastes. J Polym Environ 27(3):489–497

  36. Hamzeh Y, Ashori A, Mirzaei B (2010) Effects of waste paper sludge on the physico-mechanical properties of high density polyethylene/wood flour composites. J Polym Environ 2011(19):120–124. https://doi.org/10.1007/s10924-010-0255-3

  37. Haq S, Srivastava R (2017) Wood polypropylene (PP) composites manufactured by mango wood waste with virgin or recycled PP: mechanical, morphology, melt flow index and crystalline behaviour. J Polym Environ 25(3):640–648. https://doi.org/10.1007/s10924-016-0845-9

  38. Harmaen AS, Jalaluddin H, Paridah MT (2012) Properties of medium density fibreboard panels made from rubberwood and empty fruit bunches of oil palm biomass. J Compos Mater 47(22):2875–2883. https://doi.org/10.1177/0021998312459868

  39. Jakubowicz I (2003) Evaluation of degradability of biodegradable polyethylene (PE). Polym Degrad Stab 80(1):39–43

  40. Jawad M, Schoop R, Suter A, Klein P, Eccles R (2013) Perfil de eficacia y seguridad de Echinacea purpurea en la prevención de episodios de resfriado común: estudio clínico aleatorizado, doble ciego y controlado con placebo. Rev Fitoterapia 13(2):125–135. https://doi.org/10.1002/jsfa

  41. Jawaid M, Abdul-Khalil HA, Bakar AA (2010) Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites. Mater Sci Eng A 527(29–30):7944–7949

  42. Kakroodi AR, Kazemi Y, Rodrigue D (2013) Mechanical, rheological, morphological and water absorption properties of maleated polyethylene/hemp composites: effect of ground tire rubber addition. Compos Part B Eng 51:337–344

  43. Karlsson S, Albertsson A (1998) Biodegradable polymers and environmental interaction. Polym Eng Sci 38(8):1251–1253. https://doi.org/10.1002/pen.10294

  44. Katchy EM (2000a) Principles of  Polymer Science  (1st edition). Enugu, Nigeria. El’ Demak. Chap 11, pp 261-302

  45. Katchy EM (2000b) Introduction to polymer Technology (1st Edition). Ogui, Enugu State, EL Demak Publishers. Chap 5, pp 184-204

  46. Koshti R, Mehta L, Samarth N (2018) Biological recycling of polyethylene terephthalate: a mini-review. J Polym Environ 26(8):3520–3529. https://doi.org/10.1007/s10924-018-1214-7

  47. Kumar VK, Thakur KM, Pappu A (2017) Hybrid Polymer Composite Materials properties and characterisation. Duxford, United Kingdom. Mathew Dean, pp 39–56

  48. Mahawar MK, Jalgaonkar K (2017) Determination of some physical properties of date palm fruits. J Saudi Soc Agric Sci. https://doi.org/10.13140/rg.2.2.32984.49926

  49. Mengeloglu F, Karakus K (2008a) Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer–composites. Turk J Agric For 32:537–546

  50. Mengeloglu F, Karakus K (2008b) Thermal degradation, mechanical properties and morphology of wheat straw flour filled recycled thermoplastic composites. Sensors 8:500–519

  51. Miah MJ, Ahmed F, Hossain A, Khan AH, Khan MA (2005) Study on mechanical and dielectric properties of jute fiber reinforced low-density polyethylene (LDPE) composites. Polym Plastics Technol Eng 44(8–9):1443–1456

  52. Mohamed SAN, Zainudin ES, Sapuan SM, Azaman MD, Arifin AMT (2018) Introduction to natural fiber reinforced vinyl ester and vinyl polymer composites. In: Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites, Woodhead Publishing Series in Composites Science and Engineering, pp 1–25. https://doi.org/10.1016/b978-0-08-102160-6.00001-9

  53. Mohammadi H, Mirmehdi S, Hugen NM (2016) Rice straw/thermoplastic composite: effect of filler loading, polymer type and moisture absorption on the performance. CERNE 22(4):449–456. https://doi.org/10.1590/01047760201622042192

  54. Mohanty S, Nayak SK, Verma SK, Tripathy SS (2004) Influence of fiber treatment on the performance of sisal-polypropylene composites. J Appl Polym Sci 94(3):1336–1345

  55. Mohareb ASO, Hassanin AH, Candelier K, Thévenon MF, Candan Z (2017) Developing biocomposites panels from food packaging and textiles wastes: physical and biological performance. J Polym Environ 25(2):126–135. https://doi.org/10.1007/s10924-016-0791-6

  56. Moriana R, Vilaplana F, Karlsson S, Ribes A (2014) Correlation of chemical, structural and thermal properties of natural fibres for their sustainable exploitation. Carbohyd Polym 112:422–431. https://doi.org/10.1016/j.carbpol.2014.06.009

  57. Mylsamy K, Rajendran I (2011) The mechanical properties, deformation and thermo mechanical properties of alkali treated and untreated Agave continuous fiber reinforced epoxy composites. Mater Des 32(5):3076–3084

  58. Nourbakhsh A, Ashori A, Ziaei TH, Rezaei F (2010) Mechanical and thermo-chemical properties of wood-flour/polypropylene blends. Polym Bull 65(7):691–700. https://doi.org/10.1007/s00289-010-0288-8

  59. Ojeda TFM, Dalmolin E, Forte MMC, Jacques RJS, Bento FM, Camargo FAO (2009) Abiotic and biotic degradation of oxobiodegradable polyethylenes. Polym Degrad Stab 94(6):965–970

  60. Orhan Y, Buyukgungor H (2000) Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int Biodeterior Biodegrad 45(12):49–55

  61. Ou R, Zhao H, Sui S, Song Y, Wang Q (2010) Reinforcing effects of Kevlar fibre on the mechanical properties of wood-flour/high-density-polyethylene composites. Compos Part A 41(2010):1272–1278. https://doi.org/10.1016/j.compositesa.2010.05.011

  62. Ray D, Sarkar BK, Bose NR (2002) Impact fatigue behaviour of vinyl ester resin matrix composite reinforced with alkali treated jute fibers. Compos Part A Appl Sci Manuf 33(2):233–241

  63. Reddy RM (2008) Impact of soil composting using municipal solid waste on biodegradation of plastics. Indian J Biotechnol 7:235–239

  64. Roy PK, Surekha P, Raman R, Rajagopal C (2009) Investigating the role of metal oxidation state on the degradation behaviour of LDPE. Polym Degrad Stab 94(7):1033–1039

  65. Roy PK, Hakkarainen M, Varma IK, Albertsson A (2011) Degradable polymers: fantasy or reality. Environ Sci Technol 45:4217–4227. https://doi.org/10.1021/es104042f

  66. Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6(8):2247–2273

  67. Scott G, Wiles DM (2001) Programmed-life plastics from polyolefins: a new look at Sustainability. Biomacromol 2(3):615–622

  68. Sreekala MS, George Jayamol, Kumaran MG, Thomas Sabu (2002) The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibers. Compos Sci Technol 62:339–353

  69. Strapasson R, Amico SC, Pereira MFR, Sydenstricker THD (2005) Tensile and impact behavior of polypropylene/low density polyethylene blends. Polym Testing 24(4):468–473. https://doi.org/10.1016/j.polymertesting.2005.01.001

  70. Suraya NLM, Owolabi FAT, Abdul Khalil HPS, Saurabh CK, Paridah MT, Asniza M, Samsul R (2018) Synergistic effect of oil palm based pozzolanic materials/oil palm waste on polyester hybrid composite. J Polym Environ 26(10):4063–4072. https://doi.org/10.1007/s10924-018-1278-4

  71. Tasdemir M, Biltekin H, Caneba GT (2009) Preparation and characterization of LDPE and PP-wood fiber composites. J Appl Polym Sci 112:3095–3102

  72. Thakur VK, Thakur MK, Pappu A (2017) Hybrid polymer composite materials (1st edn). Cambridge MA, United States. https://doi.org/10.1016/b978-0-08-100791-4.00013-6

  73. Tong JY, Royan RRN, Ng YC, Ab Ghani MH, Ahmad S (2014) Study of the mechanical and morphology properties of recycled HDPE composite using rice husk filler. Adv Mater Sci Eng 2014:1–6. https://doi.org/10.1155/2014/938961

  74. Väisänen T, Haapala A, Lappalainen R, Tomppo L (2016a) Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: a review. Waste Manage 54:62–73. https://doi.org/10.1016/j.wasman.2016.04.037

  75. Väisänen T, Haapala A, Lappalainen R, Tomppo L (2016b) Utilization of agricultural and forest industry waste and residues in natural fibre-polymer composites: a review. Waste Manage 54(2016):62–73

  76. Verma A, Singh V (2016) Experimental investigations on thermal properties of coconut shell particles in DAP solution for use in green composite applications. J Mater Sci Eng 5(3):1–5. https://doi.org/10.4172/2169-0022.1000242

  77. Višnjić D, Lalić H, Dembitz V, Banfić H (2014) Metabolism and differentiation. Period Biologorum 116(1):37–43

  78. Wambua Paul, Ivens Jan, Verpoest Ignaas (2003) Natural fibers: can they replace glass in fiber reinforced plastics. Compos Sci Technol 63:1259–1264

  79. Williams D, Bevis M (1982) Effect of recycled plastic and compound additives on the properties of an injection-moulded polypropylene co-polymer—part 4 pigments and an ultra-violet stabilizer. J Mater Sci 17(7):1915–1924. https://doi.org/10.1007/BF00540407

  80. Winandy JE, Rowell RM (2005) Chemistry of wood strength. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. Taylor and Francis, Boca Raton, pp 303–348

  81. Witt U, Muller RJ, Deckwer WD (1997) Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance. J Env Polym Degrad 15:81–89

  82. Xu K, Tu D, Chen T, Zhong T, Lu J (2016) Effects of environmental-friendly modified rubber seed shell on the comprehensive properties of high density polyethylene/rubber seed shell composites. Ind Crops Prod 91:132–141

  83. Yayasekara R, Harding I, Bowater I, Lonergan G (2005) Biodegradability of selected range of polymers and polymer blends and standard methods for assessment of biodegradation. J Polym Env 13:231

Download references

Acknowledgements

The authors acknowledge Engr. Dr. Ishidi, Y. E. (FNSE, FIPE, FPIN, and FNSE), Director at SHEDA, for the collaborative role she played in providing facilities, excellent technical assistance rendered in putting up the manuscript and the successful completion of the project work. Engr. Dr, Ejiogu, I.K. and Engr. Ibeneme, U. specially thank Engr. Dr. Ishidi, Y. E. (FNSE, FIPE, FPIN and FNSE) for the critical life changing role(s) she played in their lives. We remain forever grateful. Remain blessed.

Author information

Correspondence to Ibe Kevin Ejiogu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ejiogu, I.K., Ibeneme, U., Ishidi, E.Y. et al. Biodegradable hybrid polymer composite reinforced with coconut shell and sweet date seed (Phoenix dactylifera) powder: a physico-mechanical study; part A. Multiscale and Multidiscip. Model. Exp. and Des. 3, 41–51 (2020). https://doi.org/10.1007/s41939-019-00060-3

Download citation

Keywords

  • Biodegradable polymer composite
  • Physico-mechanical properties
  • Waste high-density polyethylene
  • Coconut shell powder
  • Sweet date seed powder