A combined three and five inputs majority gate-based high performance coplanar full adder in quantum-dot cellular automata

  • Fahimeh Danehdaran
  • Shaahin Angizi
  • Milad Bagherian Khosroshahy
  • Keivan NaviEmail author
  • Nader Bagherzadeh
Original Research


Nowadays, arithmetic computing is an important subject in computer architectures in which the one-bit full-adder gate plays a significant role. Thus, efficient design of such full-adder component can be beneficial to the overall efficiency of the entire system. In this essay, a novel method for the design and simulation of a combined majority gate toward realization of the one-bit full-adder gate is proposed. We inspect an alternative approach for the streamlined physical design of quantum-dot cellular automata (QCA) full-adder circuits in which the placement of input cells and wire crossing congestion are substantially reduced. The proposed method has outstanding characteristics such as low complexity, reduced area consumption, simplified physical design, and ultra-high speed one-bit full-adder. Based on simulation results the proposed design provides 33.33% reduction in area and 20.00% improvement in complexity as well as 10.49% in 1 Ek reduction in power consumption.


Quantum-dot cellular automata (QCA) Combined majority gate Full-adder gate Power consumption Arithmetic circuit 


  1. 1.
    Liu W, Lu L, O’Neill M, Swartzlander EE (2014) The first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans Nanotechnol 13(3):476–487. CrossRefGoogle Scholar
  2. 2.
    Perri S, Corsonello P, Cocorullo G (2014) Area-delay efficient binary adders in QCA. IEEE Trans Very Large Scale Integrat (vlsi) Syst 22(5):1174–1179. CrossRefGoogle Scholar
  3. 3.
    Sen B, Dutta M, Sikdar BK (2014) Efficient design of parity preserving logic in quantum-dot cellular automata targeting enhanced scalability in testing. Microelectron J 45(2):239–248. CrossRefGoogle Scholar
  4. 4.
    Khosroshahy MB, Moaiyeri MH, Angizi S, Bagherzadeh N, Navi K (2017) Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess Microsyst 50:154–163. CrossRefGoogle Scholar
  5. 5.
    Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49. CrossRefGoogle Scholar
  6. 6.
    Roohi A, Zand R, Angizi S, Demara RF (2016) A parity-preserving reversible QCA gate with self-checking cascadable resiliency. IEEE Trans Emerg Topics Comput. CrossRefGoogle Scholar
  7. 7.
    Chabi AM, Roohi A, Khademolhosseini H, Sheikhfaal S, Angizi S, Navi K, DeMara RF (2017) Towards ultra-efficient QCA reversible circuits. Microprocess Microsyst 49:127–138. CrossRefGoogle Scholar
  8. 8.
    Vankamamidi V, Ottavi M, Lombardi F (2008) Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 27(1):34–44. CrossRefzbMATHGoogle Scholar
  9. 9.
    Bagherian khosroshahy M, Daliri MS, Abdoli A, Navi K, Bagherzadeh N (2016) A 3D universal structure based on molecular-QCA and CNT technologies. J Mol Struct 1119:86–95. CrossRefGoogle Scholar
  10. 10.
    Sayedsalehi S, Moaiyeri MH, Navi K (2011) Novel efficient adder circuits for quantum-dot cellular automata. J Comput Theor Nanosci 8(9):1769–1775. CrossRefGoogle Scholar
  11. 11.
    Dysart TJ (2013) Modeling of electrostatic QCA wires. IEEE Trans Nanotechnol 12(4):553–560. CrossRefGoogle Scholar
  12. 12.
    Kyosun K, Kaijie W, Karri R (2006) Quantum-dot cellular automata design guideline. IEICE Trans Fundam Electron Commun Comput Sci 89(6):1607–1614. CrossRefGoogle Scholar
  13. 13.
    Angizi S, Sarmadi S, Sayedsalehi S, Navi K (2015) Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron J 46(1):43–51. CrossRefGoogle Scholar
  14. 14.
    Roohi A, DeMara RF, Khoshavi N (2015) Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron J 46(6):531–542. CrossRefGoogle Scholar
  15. 15.
    Angizi S, Alkaldy E, Bagherzadeh N, Navi K (2014) Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J Low Power Electron 10(2):259–271. CrossRefGoogle Scholar
  16. 16.
    Ottavi M, Schiano L, Lombardi F, Tougaw D (2006) HDLQ: a HDL environment for QCA design. ACM J Emerg Technol Comput Syst (JETC) 2(4):243–261. CrossRefGoogle Scholar
  17. 17.
    Kumar D, Mitra D (2016) Design of a practical fault-tolerant adder in QCA. Microelectron J 53:90–104. CrossRefGoogle Scholar
  18. 18.
    Wang P, Niamat MY, Vemuru SR, Alam M, Killian T (2015) Synthesis of majority/minority logic networks. IEEE Trans Nanotechnol 14(3):473–483. CrossRefGoogle Scholar
  19. 19.
    Walus K, Jullien G (2006) Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc IEEE 94(6):1225–1244. CrossRefGoogle Scholar
  20. 20.
    Zhang R, Walus K, Wang W, Jullien GA (2004) A method of majority logic reduction for quantum cellular automata. IEEE Trans Nanotechnol 3(4):443–450. CrossRefGoogle Scholar
  21. 21.
    Navi K, Farazkish R, Sayedsalehi S, Azghadi MR (2010) A new quantum-dot cellular automata full-adder. Microelectron J 41(12):820–826. CrossRefGoogle Scholar
  22. 22.
    Navi K, Sayedsalehi S, Farazkish R, Azghadi MR (2010) Five-input majority gate, a new device for quantum-dot cellular automata. J Comput Theor Nanosci 7(8):1546–1553. CrossRefGoogle Scholar
  23. 23.
    Sayedsalehi S, Azghadi MR, Angizi S, Navi K (2015) Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inf Sci 311:86–101. MathSciNetCrossRefGoogle Scholar
  24. 24.
    Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825. CrossRefGoogle Scholar
  25. 25.
    Wang W, Walus K, Jullien GA (2003) Quantum-dot cellular automata adders. In: Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on. IEEE, pp 461–464.
  26. 26.
    Azghadi, Kavehie O, Navi K (2012) A novel design for quantum-dot cellular automata cells and full adders. arXiv Preprint. (arXiv:1204.2048) CrossRefGoogle Scholar
  27. 27.
    Angizi S, Danehdaran F, Sarmadi S, Sheikhfaal S, Bagherzadeh N, Navi K (2015) An ultra-high speed and low complexity quantum-dot cellular automata full adder. J Low Power Electron 11(2):173–180. CrossRefGoogle Scholar
  28. 28.
    Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31. CrossRefGoogle Scholar
  29. 29.
    Hanninen I, Takala J (2007) Robust adders based on quantum-dot cellular automata. In: Application-specific Systems, Architectures and Processors. ASAP. IEEE International Conf. on, 2007. IEEE, pp 391–396.
  30. 30.
    Mohammadyan S, Angizi S, Navi K (2015) New fully single layer QCA full-adder cell based on feedback model. Int J High Perform Syst Archit 5(4):202–208. CrossRefGoogle Scholar
  31. 31.
    Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans Nanotechnol 14(3):497–504. CrossRefGoogle Scholar
  32. 32.
    Labrado C, Thapliyal H (2016) Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron Lett 52(6):464–466. CrossRefGoogle Scholar
  33. 33.
    Singh G, Raj B, Sarin R (2017) Design and performance analysis of a new efficient coplanar quantum-dot cellular automata adder. Indian J Pure Appl Phys (IJPAP) 55(2):97–103.
  34. 34.
    De D, Das JC (2017) Design of novel carry save adder using quantum dot-cellular automata. J Comput Sci 22:54–68. CrossRefGoogle Scholar
  35. 35.
    Ahmad F, Bhat GM, Khademolhosseini H, Azimi S, Angizi S, Navi K (2016) Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J Comput Sci 16:8–15. MathSciNetCrossRefGoogle Scholar
  36. 36.
    Danehdaran F, Khosroshahy MB, Navi K, Bagherzadeh N (2018) Design and power analysis of new coplanar one-bit full-adder cell in quantum-dot cellular automata. J Low Power Electron 14(1):38–48. CrossRefGoogle Scholar
  37. 37.
    Roohi A, Khademolhosseini H, Sayedsalehi S, Navi K (2014) A symmetric quantum-dot cellular automata design for 5-input majority gate. J Comput Electron 13(3):701–708. CrossRefGoogle Scholar
  38. 38.
    Farazkish R, Navi K (2012) New efficient five-input majority gate for quantum-dot cellular automata. J Nanopart Res 14(11):1252. CrossRefGoogle Scholar
  39. 39.
    Farazkish R, Khodaparast F (2015) Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess Microsyst 39(6):426–433. CrossRefGoogle Scholar
  40. 40.
    Khosroshahy MB, Moaiyeri MH, Navi K (2017) Design and evaluation of a 5-input majority gate-based content-addressable memory cell in quantum-dot cellular automata. In: Computer Architecture and Digital Systems (CADS), 2017 19th International Symposium on, 2017. IEEE, pp 1–6.
  41. 41.
    Khosroshahy MB, Moaiyeri MH, Navi K, Bagherzadeh N (2017) An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results Phys 7:3543–3551. CrossRefGoogle Scholar
  42. 42.
    Srivastava S, Asthana A, Bhanja S, Sarkar S (2011) QCAPro-an error-power estimation tool for QCA circuit design. In: Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, IEEE, pp 2377–2380.
  43. 43.
    Lombardi F, Huang J (2007) Design and test of digital circuits by quantum-dot cellular automata. Artech House, Inc., NorwoodGoogle Scholar
  44. 44.
    Pudi V, Sridharan K (2012) Low complexity design of ripple carry and Brent-Kung adders in QCA. Nanotechnol IEEE Trans 11(1):105–119. CrossRefGoogle Scholar
  45. 45.
    Ahmad F, John MU, Khosroshahy MB, Sarmadi S, Bhat GM, Peer ZA, Wani SJ (2019) Performance evaluation of an ultra-high speed adder based on quantum-dot cellular automata. Int J Inf Technol. CrossRefGoogle Scholar
  46. 46.
    Bahar AN, Ahmad F, Nahid NM, Hassan MK, Abdullah-Al-Shafi M, Ahmed K (2018) An optimal design of conservative efficient reversible parity logic circuits using QCA. Int J Inf Technol. CrossRefGoogle Scholar

Copyright information

© Bharati Vidyapeeth's Institute of Computer Applications and Management 2019

Authors and Affiliations

  1. 1.School of Computer ScienceInstitute for Research in Fundamental Sciences (IPM)TehranIran
  2. 2.Department of Electrical and Computer EngineeringUniversity of Central FloridaOrlandoUSA
  3. 3.Department of Computer Science and EngineeringShahid Beheshti University, G.CTehranIran
  4. 4.Department of Electrical Engineering and Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations