Advertisement

International Journal of Information Technology

, Volume 11, Issue 4, pp 647–651 | Cite as

Comparison of color spaces for the severity analysis of mitral regurgitation

  • Arun BalodiEmail author
  • R. S. Anand
  • M. L. Dewal
  • Anurag Rawat
Original Research
  • 10 Downloads

Abstract

This paper looks at the adequacy of the four-color spaces i.e. RGB, L*A*B*, YCbCr, and CMY as far as their characterization execution in a computer helped arrangement framework for the severity analysis of mitral regurgitation into three categories i.e. mild, moderate, and severe. In order to evaluate the color space influence on the image analysis, texture features of the echocardiographic images have been extracted in different color spaces. These texture features are then utilized for training and testing purpose of the classifier i.e. support vector machine. The highest accuracy of 97.10 ± 1.06 using YCbCr color space in A2C view, 96.21 ± 0.88 and 97.37 ± 0.91 using RGB color space is achieved in A4C and PLAX views respectively. The outcomes indicate small but significant differences between color models with the ability to classify mitral regurgitation.

Keywords

Echocardiography Mitral regurgitation Color spaces Classification Severity analysis 

References

  1. 1.
    Kaddoura S (2012) Echo made easy. Elsevier Health Sciences, LondonGoogle Scholar
  2. 2.
    Utsunomiya T, Ogawa T, Doshi R, Patel D, Quan M, Henry WL, Gardin JM (1991) Doppler color flow proximal isovelocity surface area method for estimating volume flow rate: effects of orifice shape and machine factors. J Am Coll Cardiol 17(5):1103–1111CrossRefGoogle Scholar
  3. 3.
    Tribouilloy C, Shen WF, Quere J-P, Rey J-L, Choquet D, Dufosse H, Lesbre J-P (1992) Assessment of severity of mitral regurgitation by measuring regurgitant jet width at its origin with transesophageal Doppler color flow imaging. Circulation 85(4):1248–1253CrossRefGoogle Scholar
  4. 4.
    Obayya M, Abou-Chadi F (2008) Data fusion for heart diseases classification using multi-layer feed forward neural network. In: Proceedings of the international conference on computer engineering systems, (ICCES 2008), pp 67–70Google Scholar
  5. 5.
    Hanbay D (2009) An expert system based on least square support vector machines for diagnosis of the valvular heart disease. Expert Syst Appl 36(3):4232–4238CrossRefGoogle Scholar
  6. 6.
    Maglogiannis I, Loukis E, Zafiropoulos E, Stasis A (2009) Support vectors machine-based identification of heart valve diseases using heart sounds. Comput Methods Programs Biomed 95(1):47–61CrossRefGoogle Scholar
  7. 7.
    Sun S, Wang H, Jiang Z, Fang Y, Tao T (2014) Segmentation-based heart sound feature extraction combined with classifier models for a vsd diagnosis system. Expert Syst Appl 41(4):1769–1780CrossRefGoogle Scholar
  8. 8.
    Hedeshi NG, Abadeh MS (2014) Coronary artery disease detection using a fuzzy-boosting pso approach. Comput Intell Neurosci 2014:6Google Scholar
  9. 9.
    Gharehbaghi A, Borga M, Sjoberg BJ, Ask P (2015) A novel method for discrimination between innocent and pathological heart murmurs. Med Eng Phys 37(7):674–682CrossRefGoogle Scholar
  10. 10.
    Moghaddasi H, Nourian S (2016) Automatic assessment of mitral regurgitation severity based on extensive textural features on 2d echocardiography videos. Comput Biol Med 73:47–55CrossRefGoogle Scholar
  11. 11.
    Balodi A, Dewal M, Anand R, Rawat A (2016) Texture based classification of the severity of mitral regurgitation. Comput Biol Med 73:157–164CrossRefGoogle Scholar
  12. 12.
    Balodi A, Anand RS, Dewal ML, Rawat A (2019) Computer-aided classification of the mitral regurgitation using multiresolution local binary pattern. Neural Comput Appl.  https://doi.org/10.1007/s00521-018-3935-x CrossRefGoogle Scholar
  13. 13.
    Amadasun M, King R (1989) Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern 19(5):1264–1274CrossRefGoogle Scholar
  14. 14.
    Paschos G (2001) Perceptually uniform color spaces for color texture analysis: an empirical evaluation. IEEE Trans Image Process 10(6):932–937CrossRefGoogle Scholar
  15. 15.
    Ford A, Roberts A (1998) Colour space conversions, vol 1998. Westminster University, London, pp 1–31Google Scholar
  16. 16.
    Poynton C (1995) A guided tour of color space. In: Proceedings of the in SMPTE advanced television and electronic imaging conference, pp 167–180Google Scholar
  17. 17.
    Wyszecki G, Stiles WS (1982) Color science, vol 8. Wiley, New YorkGoogle Scholar
  18. 18.
    Wilhjelm JE, Gronholdt M-L, Wiebe B, Jespersen SK, Hansen LK, Sillesen H (1998) Quantitative analysis of ultrasound B-mode images of carotid atherosclerotic plaque: correlation with visual classification and histological examination. IEEE Trans Med Imaging 17(6):910–922CrossRefGoogle Scholar
  19. 19.
    Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621CrossRefGoogle Scholar
  20. 20.
    Weszka JS (1978) A survey of threshold selection techniques. Comput Graph Image Process 7(2):259–265CrossRefGoogle Scholar
  21. 21.
    Wu C-M, Chen Y-C, Hsieh K-S (1992) Texture features for classification of ultrasonic liver images. IEEE Trans Med Imaging 11(2):141–152CrossRefGoogle Scholar
  22. 22.
    Laws KI (1980) Rapid texture identification. In: Proceedings of 24th annual technical symposium, pp 376–381Google Scholar
  23. 23.
    Mandelbrot BB (1983) The fractal geometry of nature, vol 173. Macmillan, New YorkGoogle Scholar
  24. 24.
    Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297zbMATHGoogle Scholar
  25. 25.
    Virmani J, Kumar V, Kalra N, Khandelwal N (2013) Svm-based characterization of liver ultrasound images using wavelet packet texture descriptors. J Digit Imaging 26(3):530–543CrossRefGoogle Scholar
  26. 26.
    Yadav AR, Anand R, Dewal M, Gupta S (2015) Gaussian image pyramid based texture features for classification of microscopic images of hardwood species. Opt-Int J Light Electron Opt 126(24):5570–5578CrossRefGoogle Scholar
  27. 27.
    Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27CrossRefGoogle Scholar
  28. 28.
    Geisser S (1993) Predictive inference, vol 55. CRC Press, LondonCrossRefGoogle Scholar

Copyright information

© Bharati Vidyapeeth's Institute of Computer Applications and Management 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of CardiologySwami Rama Himalayan UniversityDehradunIndia

Personalised recommendations