Advertisement

International Journal of Information Technology

, Volume 11, Issue 4, pp 829–840 | Cite as

VLSI implementation of residue number system based efficient digital signal processor architecture for wireless sensor nodes

  • A. V. AnanthalakshmiEmail author
  • P. Rajagopalan
Original Research
  • 22 Downloads

Abstract

Residue number system (RNS) in computer arithmetic is an efficient parallel computation number system that employs forward conversion, residue arithmetic based arithmetic manipulation and reverses conversion, which all together increases the speed of computation in various digital signal processing applications. Nevertheless power requirement for the wireless sensor node is more important, hence this work focuses on the design and implementation of power efficient RNS based digital signal processor architecture using folded tree based parallel prefix adder by employing Chinese Remainder Theorem—I.

Keywords

Residue number system Forward converter Reverse converter Parallel prefix adder 

References

  1. 1.
    Navi K, Molahosseini AS, Esmaeildous M (2011) How to teach residue number system to computer scientists and engineers. IEEE Trans Educ 54(1):156–163CrossRefGoogle Scholar
  2. 2.
    Piestrak SJ (1995) A high-speed realization of residue to binary system converter. IEEE Trans Circ Syst II Analog Digit Signal Process 42(10):661–663CrossRefGoogle Scholar
  3. 3.
    Dhurkadas A (1998) Comments on: a high-speed realization of a residue to binary number system converter. IEEE Trans Circ Syst II Analog Digit Signal Process 45(3):446–447CrossRefGoogle Scholar
  4. 4.
    Bharadwaj M, Premkumar AB, Srikanthan T (1998) Breaking the 2n-bit carry propagation barrier in residue to binary conversion for the \( \{ 2^{n } - 1, 2^{n} ,2^{n} + 1\} \)-moduli set. IEEE Trans Circ Syst I Fundam Theory Appl 45(9):998–1002CrossRefGoogle Scholar
  5. 5.
    Wang Y, Song X, Aboulhamid M, Shen H (2002) Adder based residue to binary number converters for {2n− 1, 2n, 2n+ 1}. IEEE Trans Signal Process 50(7):1772–1779MathSciNetCrossRefGoogle Scholar
  6. 6.
    Wang W, Swamy MNS, Ahmad MO, Wang Y (2003) A study of the residue-to-binary converters for the three-moduli sets. IEEE Trans Circ Syst I Fundam Theory Appl 50(2):235–243MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hiasat AA, Abdel-Aty-Zohdy HS (1998) Residue to binary arithmetic converter for the moduli set \( \{ 2^{k } , 2^{k} - 1,2^{k - 1} - 1\} \). IEEE Trans Circ Syst II Analog Digit Signal Process 45(2):204–209CrossRefGoogle Scholar
  8. 8.
    Wang W, Swamy MNS, Ahmad MO, Wang Y (2000) A high-speed residue-to-binary converter for three-moduli \( \{ 2^{k } , 2^{k} - 1,2^{k - 1} - 1\} \), RNS and a scheme for its VLSI implementation. IEEE Trans Circ Syst II Analog Digit Signal Process 47(12):1576–1581CrossRefGoogle Scholar
  9. 9.
    Phalguna PS, Kamat Dattaguru V, Ananda Mohan PV (2018) RNS-to-binary converters for new three-moduli sets 2k–3, 2k–2, 2k–1 and {2k + 1, 2k + 2, 2k + 3}. J Circ Syst Comput 27(14):1850224CrossRefGoogle Scholar
  10. 10.
    Hiasat A (2018) A residue-to-binary converter with an adjustable structure for an extended RNS three-moduli set. J Circ Syst Comput.  https://doi.org/10.1142/s0218126619501263 CrossRefGoogle Scholar
  11. 11.
    Habibi N, Salehnamadi MR (2016) An improved RNS reverse converter in three-moduli set. J Comput Robot 9(2):27–32Google Scholar
  12. 12.
    Dimitrakopoulos G, Nikolos D (2005) High-speed parallel-prefix VLSI ling adders. IEEE Trans Comput 54(2):225–231CrossRefGoogle Scholar
  13. 13.
    Zarandi AAE, Molahosseini AS, Hosseinzadeh M, Sorouri S, Antão S, Sousa L (2015) Reverse converter design via parallel-prefix adders: novel components, methodology, and implementations. IEEE Trans Very Large Scale Integr (VLSI) Syst 23(2):374–378CrossRefGoogle Scholar
  14. 14.
    Hemapriya K, Karthikeyan R, Dr S, Kumar Raj (2014) A high performance energy-efficient architecture for portable wireless devices based on folded tree and multi-bit flip-flop merging technique. Int J Eng Res Technol (IJERT) 3(2):998–1003Google Scholar
  15. 15.
    Walravens C, Dehaene W (2014) Low-power digital signal processor architecture for wireless sensor nodes. IEEE Trans Very Large Scale Integr (VLSI) Syst 22(2):313–320CrossRefGoogle Scholar
  16. 16.
    Ladner RE, Fischer MJ (1980) Parallel prefix computation. J Assoc Comput Mach 27(4):831–838MathSciNetCrossRefGoogle Scholar
  17. 17.
    Tay TF, Chang C-H, Low JYS (2013) Efficient VLSI implementation of 2n scaling of signed integer in RNS {2n − 1, 2n, 2n + 1}. IEEE Trans Very Large Scale Integr (VLSI) Syst 21(10):1936–1940CrossRefGoogle Scholar
  18. 18.
    Prakash G, Jagadeeswaran A, Prakash M (2017) An effective FPGA design of a high speed reverse converter for the unrestricted moduli set. Asian J Appl Sci Technol (AJAST) 1(1):255–264Google Scholar

Copyright information

© Bharati Vidyapeeth's Institute of Computer Applications and Management 2019

Authors and Affiliations

  1. 1.Pondicherry Engineering CollegePuducherryIndia
  2. 2.Space Application CentreAhmadabadIndia

Personalised recommendations