Advertisement

A new design of low power varactor based voltage controlled oscillator

  • Manoj KumarEmail author
  • Dileep Dwivedi
Original Research
  • 15 Downloads

Abstract

This paper reports a new design of voltage controlled oscillator (VCO) using three transistors NOR-gate with metal oxide semiconductor (MOS) varactor tuning concept. The proposed VCO has been designed in 0.18 μm TSMC CMOS technology. Control voltage (VCT) across the MOS varactor has been varied to achieve the tuning in proposed VCO circuit. Reported VCO topology exhibits a wide tuning range from 2.781 to 4.062 GHz with the variation in control voltage (VCT) from 0 to 0.8 V with different value of supply voltage (VDD). Further, a tuning range has been observed from 1.019 to 3.777 GHz with variation in supply voltage (VDD) from 1 to 3 V. VCO shows power consumption from 0.130 to 5.685 mW with varied power supply voltage from 1 to 3 V. The proposed VCO shows phase noise of − 87.6 dBc/Hz at 1 MHz offset from the center frequency with power consumption of 1.270 mW. The figure of merit of the proposed VCO is 155.4 dBc/Hz. Proposed ring VCO shows low power consumption, wide tuning range and superior phase noise performance in comparison to the previously reported circuits.

Keywords

CMOS MOS varactor Phase noise Power consumption Tuning range VCO 

References

  1. 1.
    Hsu TY, Wang CC, Lee CY (2001) Design and analysis of a portable high-speed clock generator. IEEE Trans Circuits Syst II 48(4):367–375CrossRefGoogle Scholar
  2. 2.
    Nizhnik O, Pokharel RK, Kanaya H, Yoshida K (2009) Low noise wide tuning range quadrature ring oscillator for multi-standard transceiver. IEEE Microwave Wirel Compon Lett 19(7):470–472CrossRefGoogle Scholar
  3. 3.
    Kang SM, Leblebici Y, Kim C (2014) CMOS digital integrated circuits. Tata McGraw Hill Education (India) Private Limited, p 572Google Scholar
  4. 4.
    Choi J, Lim K, Laskar J (2008). A ring VCO with wide and linear tuning characteristics for a cognitive radio system. In: IEEE Radio Frequency Integrated Circuits Symposium, pp 395–398Google Scholar
  5. 5.
    Liou WR, Tsai CA, Yeh ML, Wu AY (2003) A low-voltage complementary metal oxide silicon 4.4-GHz voltage control oscillator design. Jpn J Appl Phys 42(10):6400–6404CrossRefGoogle Scholar
  6. 6.
    Chiu HC, Cheng CS, Yang YT, Wei CC (2008) A 10 GHz low phase-noise CMOS voltage-controlled oscillator using dual-transformer technology. Solid State Electron 52(5):765–770CrossRefGoogle Scholar
  7. 7.
    Lee SY, Hsieh JY (2008) Analysis and implementation of a 0.9-V voltage-controlled oscillator with low phase noise and low power dissipation. IEEE Trans Circ Syst I 55(7):624–627Google Scholar
  8. 8.
    Xuemei L, Zhigong W, Lianfeng S (2013) Design and analysis of a three-stage voltage-controlled ring oscillator. J Semicond 34(11):115003CrossRefGoogle Scholar
  9. 9.
    Eken YA, Uyemura JP (2004) A 5.9-GHz voltage-controlled ring oscillator in 0.18 µm CMOS. IEEE J Solid State Circuits 39(1):230–233CrossRefGoogle Scholar
  10. 10.
    Liu HQ, Goh WL, Siek L (2005) 1.8-V 10-GHz ring VCO design using 0.18-μm CMOS technology. In: SOC conference, 2005. Proceedings. IEEE international, pp. 77–78. IEEEGoogle Scholar
  11. 11.
    Kumar M, Arya SK, Pandey S (2012) Low power digitally controlled oscillator designs with a novel 3-transistor XNOR gat. J Semicond 33(3):035001CrossRefGoogle Scholar
  12. 12.
    Yoshida T, Ishida N, Sasaki M, Iwata A (2007) Low-voltage, low-phase-noise ring voltage-controlled oscillator using 1/f-noise reduction techniques. Jpn J Appl Phys 46(4):2257–2260CrossRefGoogle Scholar
  13. 13.
    Craninckx J, Steyaert MS (1995) A 1.8-GHz CMOS low-phase-noise voltage-controlled oscillator with prescaler. IEEE J Solid State Circuits 30(12):1474–1482CrossRefGoogle Scholar
  14. 14.
    Catli B, Hella MM (2008) A CMOS multi-band LC VCO for ultra low-voltage wireless applications. In: IEEE international symposium on circuits and systems, pp 996–999Google Scholar
  15. 15.
    Deen MJ, Kazemeini MH, Naseh S (2003) Performance characteristics of an ultra-low power VCO. IEEE international symposium on circuits and systems 1:697–700Google Scholar
  16. 16.
    Li T, Ye B, Jiang J (2009) 0.5 V 1.3 GHz voltage controlled ring oscillator. In: IEEE 8th international conference on ASIC, pp 1181–1184Google Scholar
  17. 17.
    Enam SK, Abidi AA (1990) A 300-MHz CMOS voltage-controlled ring oscillator. IEEE J Solid State Circuits 25(1):312–315CrossRefGoogle Scholar
  18. 18.
    Panigrahi JK, Acharya DP (2010) Performance analysis and design of wideband CMOS voltage controlled ring oscillator. In: 5th international conference on industrial and information systems, pp 234–238Google Scholar
  19. 19.
    Yeop Lee S, Amakawa S, Ishihara N, Masu K (2010) Low-phase-noise wide-frequency-range ring-VCO-based scalable PLL with subharmonic injection locking in 0.18 µm CMOS. In: Microwave symposium digest (MTT), pp 1178–1181Google Scholar
  20. 20.
    Chandrakasan AP, Sheng S, Brodersen RW (1992) Low-power CMOS digital design. IEICE Trans Electron 75(4):371–382Google Scholar
  21. 21.
    Roy K, Prasad SC (2000) Low-power CMOS VLSI circuit design. Wiley-Interscience, New YorkGoogle Scholar
  22. 22.
    Kumar M (2016) VCO design using NAND gate for low power application. J Semicond Technol Sci 16(5):650–656CrossRefGoogle Scholar
  23. 23.
    Andreani P, Bonfanti A, Romano L, Samori C (2002) Analysis and design of a 1.8-GHz CMOS LC quadrature VCO. IEEE J Solid-State Circuits 37(12):1737–1747CrossRefGoogle Scholar
  24. 24.
    Grozing M, Phillip B, Berroth M (2003) CMOS ring oscillator with quadrature outputs and 100 MHz–3.5 GHz tuning range. In: Solid-state circuits conference, ESSCIRC’03. Proceedings of the 29th European, 679–682Google Scholar
  25. 25.
    Sheu ML, Tiao YS, Taso LJ (2011) A 1-V 4-GHz wide tuning range voltage-controlled ring oscillator in 0.18 μm CMOS. Microelectronics J 42(6):897–902CrossRefGoogle Scholar
  26. 26.
    Jalil J, Reaz MBI, Ali MAM, Chang TG (2013) A low power 3-stage voltage-controlled ring oscillator in 0.18 µm CMOS process for active RFID transponder. Elektronika ir Elektrotechnika 19(8):69–72CrossRefGoogle Scholar
  27. 27.
    Zhang C, Li Z, Fang J, Zhao J, Guo Y, Chen J (2014) A novel high-speed CMOS fully-differentical ring VCO. In: Solid-State and Integrated Circuit Technology (ICSICT), 2014 12th IEEE International Conference on, pp 1–3Google Scholar

Copyright information

© Bharati Vidyapeeth's Institute of Computer Applications and Management 2019

Authors and Affiliations

  1. 1.University School of Information, Communication and TechnologyGuru Gobind Singh Indraprastha UniversityNew DelhiIndia

Personalised recommendations