Advertisement

Power budget analysis of proposed high data rate based next generation PON 2 architecture supporting high split ratio

  • Ahmed Muddassir KhanEmail author
  • Syed Hyder Abbas Musavi
  • Areez Khalil Memon
  • Zahid Ali Arain
  • Syed Shahzaib Sami
  • Sajid Ahmed
  • Faizan-ur Rehman
  • Ameer-ur-Rehman Sheikh
Original Research
  • 4 Downloads

Abstract

To cope up with the challenges of high data rate transmission techniques in access networks, we have proposed and analyzed an NG-PON 2 based architecture, which can support 40 Gbps transmission employing differential quadrature phase shift keying modulation in downstream with 10 Gbps transmission having Inverse return-to-zero modulation in upstream. The proposed design has been thoroughly analyzed under standard transmission parameters in simulation for NG-PON 2 network. Transmission performance has been investigated on the basis of Bit error rate (BER) at receiver and power budget analysis through received power at different transmission stages in proposed design at 10 km fiber. It is evident from results that proposed design is a feasible solution for high data rate transmission with large power splitting ratio which are ultimate demands in next generation access technology.

Keywords

NG-PON2 DQPSK IRZ FBG 

References

  1. 1.
    Nesset Derek (2017) PON roadmap [Invited]. J Opt Commun Netw 9(1):A71–A76CrossRefGoogle Scholar
  2. 2.
    Nesset D (2015) NG-PON2 technology and standards. J Lightwave Technol 33(5):1136–1143CrossRefGoogle Scholar
  3. 3.
    Nakamura H (2013) Ng-pon2 technology. In: National fiber optic engineers conference (pp NTh4F-5). Optical Society of America (OSA), Anaheim, California United States.  https://doi.org/10.1364/nfoec.2013.nth4f.5
  4. 4.
    Abbas HS, Gregory MA (2016) The next generation of passive optical networks: a review. J Netw Comput Appl 67:53–74CrossRefGoogle Scholar
  5. 5.
    Wei JL, Grobe K, Griesser H (2016) High speed next generation passive optical networks: performance, cost, and power dissipation. In: Progress in electromagnetic research symposium (PIERS). IEEE, Shanghai, China, pp 4856–4857. https://ieeexplore.ieee.org/document/7735774
  6. 6.
    Khan AM, Zhang J, Zhao YL, Gao GJ, Sai CHEN, Wang DB (2013) Simple and spectrally-efficient design of high capacity hybrid WDM/TDM-PON with improved receiver sensitivity. J China Univ Posts Telecommun 20(3):114–120CrossRefGoogle Scholar
  7. 7.
    Vercesi V, Porzi C, Contestabile G, Bogoni A (2014) Polarization-independent all-optical regenerator for DPSK data. In: Photonics, vol 1, no 2. Multidisciplinary Digital Publishing Institute (MDPI), Basel, Switzerland, pp 154–161. https://www.mdpi.com/2304-6732/1/2/154
  8. 8.
    Ciaramella E, Bottoni F, Corsini R, Presi M, Artiglia M (2015) Simple and effective solutions for low-cost coherent WDM-PON. In: 2015 international conference on photonics in switching (PS). IEEE, Florence, Italy, pp 271–272. https://ieeexplore.ieee.org/document/7329023
  9. 9.
    Chenika A, Temmar A, Seddiki O (2013) A novel architecture of an optical high-speed access network WDM-PON using NRZ-DQPSK/ASK modulation. ICNCRE’13. Association of Scientists, Developers and Faculties (ASDF), pp 396–398. http://edlib.asdf.res.in/2013/icncre/icncre2013080.html
  10. 10.
    Chitravelu R, Muthu GM (2017) Performance evaluation of simple CSRZ-QDPSK transmitter configurations for 20-Gbps PON applications. Turk J Electr Eng Comput Sci 25(2):1263–1277CrossRefGoogle Scholar
  11. 11.
    Tiwari V, Sikdar D, Chaubey VK (2013) Performance optimization of RZ-DQPSK modulation scheme for dispersion compensated optical link. Opt Int J Light Electron Opt 124(17):2593–2596CrossRefGoogle Scholar
  12. 12.
    Wenhao J, Lun J, Shoufeng T, Xiaoyan L (2015) Differential phase shift keying in the research on the effects of type pattern of space optical communication system. In: Proceedings of the 2015 4th international conference on computer, mechatronics, control and electronic engineering. Atlantis Press, Hanzhou, China.  https://doi.org/10.2991/iccmcee-15.2015.257
  13. 13.
    Martinez JJ, Merayo N, Villafranca A, Garcés I (2011) WDM-PON network upscaling using in-building linear SOAs. In: 13th international conference on in transparent optical networks (ICTON). IEEE, Stockholm, Sweden, pp 1–4. https://ieeexplore.ieee.org/document/5970979
  14. 14.
    Mraković MD, Matavulj PS (2011) Analysis of coexisting GPON and NG-PON1 (10G-PON) systems. Telfor J 3(1):43–48Google Scholar
  15. 15.
    Müllerová J, Korček D, Dado M (2012) On wavelength blocking for XG-PON coexistence with GPON and WDM-PON networks. In: 14th international conference on in transparent optical networks (ICTON). IEEE, Coventry, UK, pp 1–4. https://ieeexplore.ieee.org/document/6253748
  16. 16.
    Khan AM, Zhang J, Zhao Y, Khan Y, Latif A, Han J (2013) A cost-effective and spectrally-efficient design of centralized light source WDM-PON using aggregated 160 Gbit/s DQPSK modulation for downstream and re-modulated IRZ for upstream transmission. Adv Inf Sci Serv Sci 5(3):305Google Scholar
  17. 17.
    Khan AM, Jie Z, Khan Y, Idrees M, Zhao Y, Niazi S et al (2013) A simple and cost-effective design for simultaneous transmission of point-to-point and broadcast services in WDM-PON. Int J Fut Gener Commun Netw 6(3):41–56Google Scholar
  18. 18.
    Li L, Zhao D (2015) Performance of phase modulation in WDM-PON transmission system. J Opt Commun 36(1):57–65CrossRefGoogle Scholar
  19. 19.
    Raghav PK, Chaudhary R (2012) Compensation of dispersion in 10 Gbps WDM system by using fiber Bragg grating. IJCEM I J Comput Eng Manag 15(5):16–20Google Scholar
  20. 20.
    Islam MJ, Islam MS, Rahman MM, Rokanuzzaman M (2012) Dispersion compensation in optical fiber communication using fiber Bragg grating. Global J Res Eng 12(2):24–29Google Scholar
  21. 21.
    Memon AK, Khan AM, Musavi SHA, Gaho AA (2017) Viable solution for next generation passive optical network 2 (NG-PON 2) supporting 40 Gbps downstream DQPSK and 10 Gbps upstream OOK. Int J Future Gener Commun Netw 10(8):29–37CrossRefGoogle Scholar
  22. 22.
    Khan AM, Musavi SHA, Memon AK, Jatoi MA et al (2017) Design & analysis of noise-resilient mix data rate passive optical network supporting simultaneous transmission of both NGPON standards. In: IJFGCN, vol 10, no 9, pp 1–12Google Scholar
  23. 23.
    Optisys Simulation Software. https://optiwave.com/

Copyright information

© Bharati Vidyapeeth's Institute of Computer Applications and Management 2019

Authors and Affiliations

  • Ahmed Muddassir Khan
    • 1
    Email author
  • Syed Hyder Abbas Musavi
    • 1
  • Areez Khalil Memon
    • 1
  • Zahid Ali Arain
    • 1
  • Syed Shahzaib Sami
    • 1
  • Sajid Ahmed
    • 1
  • Faizan-ur Rehman
    • 1
  • Ameer-ur-Rehman Sheikh
    • 1
  1. 1.Indus UniversityKarachiPakistan

Personalised recommendations