Advertisement

Improved fuzzy commitment scheme

  • Sonam ChauhanEmail author
  • Ajay Sharma
Original Research

Abstract

To ensure privacy and secrecy of biometric data, template protection schemes are widely used. Template protection schemes ensure renewability, irreversibility, and unlinkability among the templates. The Fuzzy Commitment Scheme is one of the widely used template protection schemes. This biometric cryptosystem combines cryptography and error correction codes. The original fuzzy commitment scheme is not secure. In this paper, an improved fuzzy commitment scheme has been introduced. The introduced scheme is validated using biometric data from the CASIA-Iris-Thousand dataset. In this paper, improved fuzzy commitment scheme or code-offset constructions are presented that use more than one key to secure the biometric data. The additional keys increase the exhaustive search space. The additional key made it impossible for an intruder to utilize the decoding algorithms to gain information about the user biometrics.

Keywords

Fuzzy commitment scheme Biometrics BCH code RS Code 

References

  1. 1.
    Teoh ABJ, Goh A, Ngo DCL (2006) Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometrics and Random Identity Inputs. IEEE Trans Pattern Anal Mach Intell 28(12):1892–1901CrossRefGoogle Scholar
  2. 2.
    Teoh ABJ, Yuang CT (2007) Cancelable biometrics realization with multispace random projections. IEEE Trans Syst Man Cybern Part B Cybern 37(5):1096–1106CrossRefGoogle Scholar
  3. 3.
    Pillai JK, Patel VM, Chellappa R, Ratha NK (2010) Sectored Random Projections for Cancelable Iris Biometrics. In: Proceedings of international conference on acoustics speech and signal processing (ICASSP), pp 1838–1841Google Scholar
  4. 4.
    Pillai JK, Patel VM, Chellappa R, Ratha NK (2011) Secure and robust iris recognition using random projections and sparse representations. IEEE Trans Pattern Anal Mach Intell 33(9):1877–1893CrossRefGoogle Scholar
  5. 5.
    Savvides M, Kumar B, Khosla P (2004) Cancelable biometric filters for face recognition. Proc Int Conf Pattern Recognit 3:922–925CrossRefGoogle Scholar
  6. 6.
    Hirata S, Takahashi K (2009) Cancelable biometrics with perfect secrecy for correlation-based matching. Adv Biom LNCS 5558:868–878CrossRefGoogle Scholar
  7. 7.
    Takahashi K, Hirata S (2011) Cancelable biometrics with provable security and its application to fingerprint verification. IEICE Trans Fundam Electron Commun Comput Sci 94-A(1):233–244CrossRefGoogle Scholar
  8. 8.
    Takahashi K, Hitachi SH (2000) Generating provably secure cancelable fingerprint templates based on correlation-invariant random filtering. In: Proceedings of IEEE 3rd international conference on biometrics: theory, applications, and systems, pp 1–6Google Scholar
  9. 9.
    Lu H, Bone P, Young R, Chatwin C (2007) A Novel Logarithmic Mapping Algorithm for the Human IRIS Recognition using MACH Filter. In: Proceedings of IEEE 15th signal processing and communications applications, pp 1–4Google Scholar
  10. 10.
    Yan Y, Zhang Y-J (2008) Multimodal biometrics fusion using Correlation Filter Bank. In: Proceedings of 19th international conference on pattern recognition, pp 1–4Google Scholar
  11. 11.
    Boumbarov O, Sakolov S, Petrov P, Sachenko A, Kurylyak Y (2009) Kernel-based face detection and tracking with adaptive control by Kalman filtering. In: Proceedings of IEEE international workshop on intelligent data acquisition and advanced computing systems: technology and applications, pp 434–439Google Scholar
  12. 12.
    Teoh AB, Kuan YW (2008) Lee S (2008) Cancelable biometrics and annotations on biohash. Pattern Recogn 41:2034–2044CrossRefGoogle Scholar
  13. 13.
    Teoh AB, Ling DNC, Goh A (2004) Biohashing: two factor authentication featuring fingerprint data and tokenized random number. Pattern Recogn 37(11):2245–2255CrossRefGoogle Scholar
  14. 14.
    Connie T, Teoh A, Goh M, Ngo D (2005) Palmhashing: a novel approach for cancelable biometrics. Inform Process Lett 93(1):1–5MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kong A, Cheung K-H, Zhang D, Kamel M, You J (2006) An analysis of biohashing and its variants. Pattern Recogn 39(7):1359–1368CrossRefGoogle Scholar
  16. 16.
    Boult T (2006) Robust distance measures for face-recognition supporting revocable biometric tokens. In: Proceedings of 7th international conference on automatic face and gesture recognition (FGR 2006), pp 560–566Google Scholar
  17. 17.
    Boult T, Scheirer W, Woodworth R (2007) Revocable fingerprint biotokens: accuracy and security analysis. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp 1–8Google Scholar
  18. 18.
    Rathgeb C, Breitinger F, Busch C (2013) Alignment-free cancelable iris biometric templates based on adaptive bloom filters. In: Proceedings of 2013 international conference on biometrics, pp 1–8Google Scholar
  19. 19.
    Rathgeb C, Breitinger F, Busch C, Baier H (2014) On the application of bloom filters to iris biometrics. IET J Biom 3(4):207–218CrossRefGoogle Scholar
  20. 20.
    Rathgeb C, Busch C (2014) Cancelable multi-biometrics: mixing iris-codes based on adaptive bloom filters. Comput Sec 42:1–12CrossRefGoogle Scholar
  21. 21.
    Rathgeb C, Breitinger F, Baier H, Busch C (2015) Towards bloom filter-based indexing of iris biometric data. In: Proceedings of international conference on biometrics (ICB), pp 422–429Google Scholar
  22. 22.
    Gomez-Barreo M, Rathgeb C, Galbally J, Fierrez J, Busch C (2014) Protected facial biometric templates based on local gabor patterns and adaptive bloom filters. In: Proceedings of 22nd international conference on pattern recognition, pp 4483–4488Google Scholar
  23. 23.
    Butt M, Damer N (2014) Helper data scheme for 2D cancelable face recognition using bloom filters. In: Proceedings of IWSSIP, pp 271–274Google Scholar
  24. 24.
    Abe N, Yamada S, Shinzaki T (2015) Irreversible fingerprint template using minutiae relation code with bloom filter. Proceedings of 7th international conference on biometrics theory, applications and systems (BTAS), pp 1–7Google Scholar
  25. 25.
    Rathgeb C, Wanger J, Tams B, Busch C (2015) Preventing the cross-matching attack in Bloom filter-based cancelable biometrics. In: 3rd International workshop on biometrics and forensics (IWBF 2015), pp 527–534Google Scholar
  26. 26.
    Rathgeb C, Gomez-Barrero M, Busch C, Galbally J, and Fierrez J (2015) Towards cancelable multi-biometrics based on bloom filters: a case study on feature level fusion of face and iris. In: 3rd International workshop on biometrics and forensics (IWBF 2015), pp. 1–6Google Scholar
  27. 27.
    Li G, Yang B, Rathgeb C, Busch C (2015) Towards generating protected fingerprint templates based on bloom filters. In: 3rd International workshop on biometrics and forensics (IWBF 2015), pp 1–6Google Scholar
  28. 28.
    Rathgeb C, Busch C (2013) Comparing binary iris biometric templates based on counting bloom filters. Prog Pattern Recognit Image Anal Comput Vis Appl LNCS 8259:262–269Google Scholar
  29. 29.
    Bringer J, Morel C, Rathgeb C (2015) Security analysis of Bloom filter-based iris biometric template protection. In: Proceedings of 7th international conference on biometrics (ICB), pp 527–534Google Scholar
  30. 30.
    Dodis Y, Reyzin L, Smith A (2004) Fuzzy Extractors: how to generate strong secret keys from biometrics and other noisy data. Advances in cryptography-EUROCRYPT 2004. LNCS 3027:523–540zbMATHGoogle Scholar
  31. 31.
    Simoens K, Tuyls P, Preneel B (2009) Privacy weaknesses in biometric sketches. In: Proceedings of the 2009 IEEE symposium on security and privacyGoogle Scholar
  32. 32.
    Chang E-C, Roy S (2007) Robust extraction of secret bits from minutiae. In: Proceedings of international conference on biometrics, pp 750–759Google Scholar
  33. 33.
    Skoric B, De Vreede N (2014) The spammed code offset method. IEEE Trans Inf Forensics Sec 9(5):875–884CrossRefGoogle Scholar
  34. 34.
    Juels A, Wattenberg M (1999) A fuzzy commitment scheme. In: Proceedings of the 6th ACM conference on computer and communications security, pp 28–36Google Scholar
  35. 35.
    Hao F, Anderson R, Daugman J (2006) Combining crypto with biometrics effectively. IEEE Trans Comput 55(9):1081–1088CrossRefGoogle Scholar
  36. 36.
    Rathgeb C, Uhl A (2010) Adaptive fuzzy commitment scheme based on iris-code error analysis. In: Proceedings of the 2nd European workshop on visual information processing (EUVIP’10), pp 41–44Google Scholar
  37. 37.
    Juels A, Sudan M (2002) A fuzzy vault scheme. In: Proceedings of the IEEE international symposium on information theory (IS1T 2002)Google Scholar
  38. 38.
    Juels A, Sudan M (2006) A fuzzy vault scheme. Des Codes Crypt 38(2):237–257MathSciNetCrossRefGoogle Scholar
  39. 39.
    Uludag U, Pankanti S, Jain AK (2005) Fuzzy vault for fingerprint. In: Proceedings of audio-and video-based biometric person authentication (AVBPA 2005), LNCS vol 3546, pp 310–319Google Scholar
  40. 40.
    Nandakumar K, Jain AK, Pankanti S, (2007) Fingerprint-based fuzzy vault: implementation and performance. IEEE Trans Inf Forensics Sec 2(4): 744–757Google Scholar
  41. 41.
    Uludag U, Jain A (2006) Securing fingerprint template: fuzzy vault with helper data. In: Proceedings of computer vision and pattern recognition workshop (CVPRW’06), p 163Google Scholar
  42. 42.
    Yang S, Verbauwhede I (2005) Automatic secure fingerprint verification system based on fuzzy vault scheme. In: Proceedings of IEEE conference on acoustic, speech and signal processing (ICASSP’05), vol 5, pp 609–612Google Scholar
  43. 43.
    Nandakumar K, Nagar A, Jain AK (2007) Hardening Fingerprint Fuzzy Vault using Password. In: SW Lee, SZ Li (eds) Advances in biometrics (ICB 2007), LNCS, vol 4642, pp 927–937Google Scholar
  44. 44.
    Nagar A, Nandakumar K, Jain AK (2008) Securing fingerprint template: fuzzy vault with minutiae descriptors. In: Proceedings of 19th international conference on pattern recognition (ICPR 2008), pp 1–4Google Scholar
  45. 45.
    Li Q, Sutcu Y, Menon, N (2006) Secure sketch for biometric templates. In: X Lai, K Chen (eds) Advances in cryptology-ASIACRYPT 2006, LNCS, vol 4284, pp 99–113Google Scholar
  46. 46.
    Li Q, Chang E-C (2006) Robust, short and sensitive authentication tags using secure sketch. In: Proceedings of the 8th workshop on multimedia and security, pp 56–61Google Scholar
  47. 47.
    Dodis Y, Smith A (2005) Correcting errors without leaking partial information. In: Proceedings of thirty-seventh annual ACM symposium on theory of computing, pp 654–663Google Scholar
  48. 48.
    Linnartz J-P, Tuyls P (2003) New shielding functions to enhance privacy and prevent misuse of biometric templates. In: Proceedings of 4th international conference on AVBPA, pp 393–402Google Scholar
  49. 49.
    Bui FM, Martin K, Lu H, Plataniotis KN, Hatzinakos D (2010) Fuzzy key binding strategies based on quantization index modulation (QIM) for biometric encryption (be) applications. IEEE Trans Inf Forensics Secur 5(1):118–132CrossRefGoogle Scholar
  50. 50.
    Jain AK, Nandakumar K, Nagar A (2008) Biometric template security. EURASIP J Adv Signal Process 2008:113CrossRefGoogle Scholar
  51. 51.
    Chauhan S, Sharma A (2018) Securing Fuzzy Commitment Scheme against decodability attack-based cross-matching. In: International Conference on Wireless Intelligent and Distributed Environment for Communication 18: 39-50.Google Scholar
  52. 52.
    Chauhan S, Sharma A (2016) Fuzzy Commitment Scheme based on Reed Solomon Codes. In: Proceedings of the 9th International Conference on Security of Information and Networks, pp. 96-99Google Scholar
  53. 53.
    CASIA Iris database: http://biometrics.idealtest.org/findDownloadDbByMode.do?mode=Iris. Accessed 26 June 2017

Copyright information

© Bharati Vidyapeeth's Institute of Computer Applications and Management 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringDelhi-NCRSonipatIndia

Personalised recommendations