Advertisement

Aerosol Science and Engineering

, Volume 2, Issue 4, pp 206–215 | Cite as

Identification and Quantification of Bioaerosols in a Tropical Coastal Region: Cartagena de Indias, Colombia

  • María E. HuertasEmail author
  • Rosa L. Acevedo-Barrios
  • Melanys Rodríguez
  • Julián Gaviria
  • Raúl Arana
  • Cesar Arciniegas
Original Paper
  • 829 Downloads

Abstract

Bioaerosols are particles of living or dead biological material released into the atmosphere from the biosphere that play a vital role in ecosystem dynamics, and they affect agriculture, climate and human health. Scientific data about concentrations and identification of fungal spores, airborne bacteria, pollen and other primary biological particles are insufficient, especially in coastal regions. Therefore, the objective of this study was to identify and quantify fungi and bacteria concentrations on one beach of Cartagena de Indias, Colombia. Over a period of 4 months, 300 fungi and bacteria samples were collected using a cascade impactor. The results show that the fungal concentration was 176 ± 44 CFU/m3, and Aspergillus sp. was the most common fungus in the air. In comparison, the bacterial concentration was 146 ± 38 CFU/m3, with a higher presence of Staphylococcus aureus. It was found that some bioaerosols were pathogenic, and others had bioremediation potential. In addition, this study addresses the relevance of meteorological factors in controlling the fungi and bacteria concentrations finding a significant linear correlation between wind speed and bioaerosol concentrations, explained by a strong land–sea breeze circulation in tropical areas.

Keywords

Fungi Bacteria Biological aerosols Beach Tropic 

References

  1. Acevedo R, Bertel A, Alonso J, Olivero J (2016) Perchlorate tolerant bacteria from saline environments at the Caribbean region of Colombia. Toxicol Lett.  https://doi.org/10.1016/j.toxlet.2016.07.257 CrossRefGoogle Scholar
  2. Agarwal S, Mandal P, Srivastava A (2016) Quantification and characterization of size-segregated bioaerosols at Municipal Solid Waste Dumping Site in Delhi. Procedia Environ Sci 35:400–407.  https://doi.org/10.1016/j.proenv.2016.07.021 CrossRefGoogle Scholar
  3. Araujo J, Rojas Y, Yegres F (2013) Evaluación aeromicrobiológica en la costa del puerto de La Vela de Coro, patrimonio cultural de la humanidad. Multiciencias 13(4):355–362Google Scholar
  4. CIOH (2017) Epocas climáticas en el litoral del caribe colombiano. http://www.cioh.org.co/meteorologia/Climatologia/ClimatologiaCaribe7.php. Accessed 26 Aug 2017
  5. Coccia AM, Gucci PMB, Lacchetti I, Paradiso R, Scaini F (2010) Airborne microorganisms associated with waste management and recovery: biomonitoring methodologies. Annali Dell’Istituto Superiore Di Sanita.  https://doi.org/10.4415/ANN-10-03-11 CrossRefGoogle Scholar
  6. Cunliffe M, Engel A, Frka S, Gašparović BŽ, Guitart C, Murrell JC et al (2013) Sea surface microlayers: a unified physicochemical and biological perspective of the air–ocean interface. Prog Oceanogr.  https://doi.org/10.1016/j.pocean.2012.08.004 CrossRefGoogle Scholar
  7. Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-012-4584-0 CrossRefGoogle Scholar
  8. Flores FJ, Pardavé LM, Valenzuela IC (2007) Estudio aerobiológico de la zona aledaña al relleno sanitario San Nicolas, municipio de Aguascalientes. Investigación y Ciencia 15(37):13–18Google Scholar
  9. Fröhlich-Nowoisky J, Burrows SM, Xie Z, Engling G, Solomon PA, Fraser MP et al (2012) Biogeography in the air: fungal diversity over land and oceans. Biogeosciences 9(3):1125–1136.  https://doi.org/10.5194/bg-9-1125-2012 CrossRefGoogle Scholar
  10. Fröhlich-Nowoisky J, Kampf CJ, Weber B, Huffman JA, Pöhlker C, Andreae MO et al (2016) Bioaerosols in the Earth system: climate, health, and ecosystem interactions. Atmos Res.  https://doi.org/10.1016/j.atmosres.2016.07.018 CrossRefGoogle Scholar
  11. García-Mena J, Murugesan S, Pérez-Muñoz AA, García-Espitia M, Maya O, Jacinto-Montiel M et al (2016) Airborne bacterial diversity from the low atmosphere of greater Mexico City. Microb Ecol 72(1):70–84.  https://doi.org/10.1007/s00248-016-0747-3 CrossRefGoogle Scholar
  12. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology.  https://doi.org/10.1099/mic.0.2007/007641-0 CrossRefGoogle Scholar
  13. Heo KJ, Kim HB, Lee BU (2014) Concentration of environmental fungal and bacterial bioaerosols during the monsoon season. J Aerosol Sci 77:31–37.  https://doi.org/10.1016/j.jaerosci.2014.07.001 CrossRefGoogle Scholar
  14. Hurtado L, Rodríguez G, López J, Castillo JE, Molina L, Zavala M, Quintana PJE (2014) Characterization of atmospheric bioaerosols at 9 sites in Tijuana, Mexico. Atmos Environ 96:430–436.  https://doi.org/10.1016/j.atmosenv.2014.07.018 CrossRefGoogle Scholar
  15. INSHT (1996) NTP 409: contaminantes biológicos: criterios de valoraciónGoogle Scholar
  16. Jones AM, Harrison RM (2004) The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci Total Environ.  https://doi.org/10.1016/j.scitotenv.2003.11.021 CrossRefGoogle Scholar
  17. Koneman E (2008) Microbiological diagnosis: text and color atlas (Médica Pan)Google Scholar
  18. Li M, Qi J, Zhang H, Huang S, Li L, Gao D (2011) Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region. Sci Total Environ 409(19):3812–3819.  https://doi.org/10.1016/j.scitotenv.2011.06.001 CrossRefGoogle Scholar
  19. Maldonado-Vega M, Peña-Cabriales JJ, De Los Santos Villalobos S, Castellanos-Arévalo AP, Camarena-Pozos D, Arévalo-Rivas B et al (2014) Bioaerosoles y evaluación de la calidad del aire en dos centros hospitalarios ubicados en León, Guanajuato, Mexico. Rev Int Contam Ambient 30(4):138–143Google Scholar
  20. Marks R, Kruczalak K, Jankowska K, Michalska M (2001) Bacteria and fungi in air over the Gulf of Gdańsk and Baltic sea. J Aerosol Sci.  https://doi.org/10.1016/S0021-8502(00)00064-1 CrossRefGoogle Scholar
  21. Miller STK, Keim BD, Talbot RW, Mao H (2003) Sea breeze: structure, forecasting, and impacts. Rev Geophys 41(3):1011.  https://doi.org/10.1029/2003RG000124 CrossRefGoogle Scholar
  22. Mohammed S, Moselhy S, Mostafa E (2011) Microbiological environmental monitoring in pharmaceutical facility. Egypt Acad J Biol Sci 3(1):63–74Google Scholar
  23. Moll WM, Ungerechts J, Marklein G, Schaal KP (1996) Comparison of BBL Crystal® ANR ID Kit and API rapid ID 32 A for identification of anaerobic bacteria. Zentralblatt Für Bakteriologie 284(2–3):329–347.  https://doi.org/10.1016/S0934-8840(96)80109-5 CrossRefGoogle Scholar
  24. Morin-Sardin S, Nodet P, Coton E, Jany JL (2017) Mucor: a Janus-faced fungal genus with human health impact and industrial applications. Fungal Biol Rev.  https://doi.org/10.1016/j.fbr.2016.11.002 CrossRefGoogle Scholar
  25. Noguchi H, Uchino M, Shida O, Takano K, Nakamura LK, Komagata K (2004) Bacillus vietnamensis sp. nov., a moderately halotolerant, aerobic, endospore-forming bacterium isolated from Vietnamese fish sauce. Int J Syst Evol Microbiol 54(6):2117–2120.  https://doi.org/10.1099/ijs.0.02895-0 CrossRefGoogle Scholar
  26. Norhidayah A, Chia-Kuang L, Azhar MK, Nurulwahida S (2013) Indoor air quality and sick building syndrome in three selected buildings. Procedia Eng Malaysian Tech Univ Conf Eng Technol 53(2010):93–98.  https://doi.org/10.1016/j.proeng.2013.02.014 CrossRefGoogle Scholar
  27. O’Connor D, Daly S, Sodeau J (2015) On-line monitoring of airborne bioaerosols released from a composting/green waste sitele. Waste Manag 42:23–30CrossRefGoogle Scholar
  28. Olaya D, Perez F (2006) Caracterización cualitativa-cuantitativa de bioaerosoles relacionados con factores meteorológicos y material particulado en Puente Aranda Bogotá D.C. Universidad de la Salle. http://repository.lasalle.edu.co/bitstream/handle/10185/14797/00798266.pdf?sequence=1&isAllowed=y. Accessed 26 Aug 2017
  29. Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol.  https://doi.org/10.1016/S0065-2911(09)05501-5 CrossRefGoogle Scholar
  30. Srinivas CV, Venkatesan R, Somayaji KM, Bagavath Singh A (2006) A numerical study of sea breeze circulation observed at a tropical site Kalpakkam on the east coast of India, under different synoptic flow situations. J Earth Syst Sci 115(5):557–574.  https://doi.org/10.1007/BF02702909 CrossRefGoogle Scholar
  31. Sun J, Ariya PA (2006) Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review. Atmos Environ.  https://doi.org/10.1016/j.atmosenv.2005.05.052 CrossRefGoogle Scholar
  32. Tang JW (2009) The effect of environmental parameters on the survival of airborne infectious agents. J R Soc Interface 6(Suppl_6):S737–S746.  https://doi.org/10.1098/rsif.2009.0227.focus CrossRefGoogle Scholar
  33. Theunissen HJ, Lemmens-den Toom NA, Burggraaf A, Stolz E, Michel MF (1993) Influence of temperature and relative humidity on the survival of Chlamydia pneumoniae in aerosols. Appl Environ Microbiol 59:2589–2593Google Scholar
  34. Trivedi N, Gupta V, Kumar M, Kumari P, Reddy CRK, Jha B (2011) An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohyd Polym 83(2):891–897.  https://doi.org/10.1016/j.carbpol.2010.08.069 CrossRefGoogle Scholar
  35. Vélez-Pereira A, Caicedo YC, Rincones SRB (2010) Distribución espacio-temporal de aerobacterias en el relleno sanitario palangana, Santa Marta (Colombia). Intropica 5(1):7–18.  https://doi.org/10.21676/23897864.148 CrossRefGoogle Scholar
  36. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA et al (eds) (2009) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York.  https://doi.org/10.1007/978-0-387-68489-5 Google Scholar
  37. Wang CH, Chen BT, Han BC, Liu ACY, Hung PC, Chen CY, Chao HJ (2015) Field evaluation of personal sampling methods for multiple bioaerosols. PLoS One.  https://doi.org/10.1371/journal.pone.0120308 CrossRefGoogle Scholar
  38. Wanner H, Verhoeff A, Colombi A, Flannigan B, Gravesen S, Mouilleseaux A et al (1993) Report no. 12: Biological particles in indoor environments. Indoor air quality and its impact on man project 613. http://www.inive.org/medias/ECA/ECA_Report12.pdf. Accessed 26 Aug 2017
  39. Wéry N (2014) Bioaerosols from composting facilities—a review. Front Cellular Infection Microbiol 4:42.  https://doi.org/10.3389/fcimb.2014.00042 CrossRefGoogle Scholar
  40. WMO - World Meteorological Organization (2008) Guide to Meteorological Instruments and Methods of observation. Seventh edition. https://www.weather.gov/media/epz/mesonet/CWOP-WMO8.pdf
  41. Yoo K, Lee TK, Choi EJ, Yang J, Shukla SK, Hwang S, Park J (2017) Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: a review. J Environ Sci 51:234–247.  https://doi.org/10.1016/J.JES.2016.07.002 CrossRefGoogle Scholar
  42. Zhang D, Murata K, Hu W, Yuan H, Li W, Matsusaki H, Kakikawa M (2017) Concentration and viability of bacterial aerosols associated with weather in asian continental outflow: current understanding. Aerosol Sci Eng 1:66–77.  https://doi.org/10.1007/s41810-017-0008-y CrossRefGoogle Scholar
  43. Zhong X, Qi J, Li H, Dong L, Gao D (2016) Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region. Atmos Environ 140:506–513.  https://doi.org/10.1016/j.atmosenv.2016.06.034 CrossRefGoogle Scholar

Copyright information

© Institute of Earth Environment, Chinese Academy Sciences 2018

Authors and Affiliations

  1. 1.Tecnológico de Monterrey, Escuela de Ingeniería y CienciasMonterreyMexico
  2. 2.Universidad Tecnológica de BolívarCartagenaColombia
  3. 3.Fundación Universitaria Tecnológico de ComfenalcoCartagenaColombia

Personalised recommendations