Advertisement

Aerosol Science and Engineering

, Volume 2, Issue 4, pp 165–172 | Cite as

Measuring the Organic Carbon to Organic Matter Multiplier with Thermal/Optical Carbon-Quadrupole Mass Spectrometer Analyses

  • Judith C. ChowEmail author
  • Gustavo M. Riggio
  • Xiaoliang Wang
  • L.-W. Antony Chen
  • John G. Watson
Original Paper
  • 642 Downloads

Abstract

A thermal/optical carbon analyzer (TOA) was adapted to direct thermally-evolved gases to an electron ionization quadrupole mass spectrometer (QMS), creating a TOA-QMS. While this approach produces spectra similar to those obtained by the Aerodyne aerosol mass spectrometer (AMS), and can quantify sulfate (SO42−), nitrate (NO3), ammonium (NH4+), and organic carbon (OC) fractions from ambient particle laden quartz-fiber filters, there remains a need to further understand the composition of the organic aerosol fraction. Elemental analysis (EA) of standard organic mixtures and ambient samples demonstrates the feasibility of the TOA-QMS for measuring the ratios of oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), nitrogen-to-carbon (N/C), sulfur-to-carbon (S/C), and organic matter-to-organic carbon (OM/OC). For ambient samples from Central California, the TOA-QMS returned average ratios for O/C of 1.03 ± 0.27 and H/C of 1.95 ± 0.69, respectively. Higher H/C ratios were observed during clean air episodes, while lower ratios were observed during hazy conditions. A relatively constant level of aerosol oxidation was observed throughout the study. The average OM/OC multiplier was 2.55 ± 0.4, which is higher than the conventionally used values of 1.4 and 1.8, indicating higher contributions from biomass burning and aged aerosols.

Keywords

Organic carbon Organic matter Ratios of O/C and H/C And OM/OC 

Notes

Acknowledgements

This research was partially supported by National Science Foundation Grant no. CHE 1464501 and the National Park Service IMPROVE Carbon Analysis Contract P16PC00229. Dr. Glenn Miller of the University of Nevada, Reno provided useful suggestions for the experiments and their description.

References

  1. Aiken AC, DeCarlo PF, Jimenez JL (2007) Elemental analysis of organic species with electron ionization high-resolution mass spectrometry. Anal Chem 79:8350–8358CrossRefGoogle Scholar
  2. Aiken AC et al (2008) O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ Sci Technol 42:4478–4485CrossRefGoogle Scholar
  3. Altieri KE, Turpin BJ, Seitzinger SP (2009) Composition of dissolved organic nitrogen in continental precipitation investigated by ultra-high resolution FT-ICR mass spectrometry. Environ Sci Technol 43:6950–6955CrossRefGoogle Scholar
  4. Bateman AP, Nizkorodov SA, Laskin J, Laskin A (2009) Time-resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry. Phys Chem Chem Phys 11:7931–7942CrossRefGoogle Scholar
  5. Chen L-WA, Watson JG, Chow JC, Magliano KL (2007) Quantifying PM2.5 source contributions for the San Joaquin Valley with multivariate receptor models. Environ Sci Technol 41:2818–2826CrossRefGoogle Scholar
  6. Chen L-WA et al (2015) Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol. Atmos Meas Tech 8:451–461CrossRefGoogle Scholar
  7. Chow JC, Watson JG, Chen L-WA, Chang M-CO, Robinson NF, Trimble DL, Kohl SD (2007a) The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. J Air Waste Manage Assoc 57:1014–1023CrossRefGoogle Scholar
  8. Chow JC, Watson JG, Lowenthal DH, Chen L-WA, Zielinska B, Mazzoleni LR, Magliano KL (2007b) Evaluation of organic markers for chemical mass balance source apportionment at the Fresno supersite. Atmos Chem Phys 7:1741–1754CrossRefGoogle Scholar
  9. Chow JC, Lowenthal DH, Chen L-WA, Wang XL, Watson JG (2015a) Mass reconstruction methods for PM2.5: a review. Air Qual Atmos Health 8:243–263CrossRefGoogle Scholar
  10. Chow JC et al (2015b) Optical calibration and equivalence of a multiwavelength thermal/optical carbon analyzer. Aerosol Air Qual Res 15:1145–1159.  https://doi.org/10.4209/aaqr.2015.02.0106 CrossRefGoogle Scholar
  11. Frank NH (2006) Retained nitrate, hydrated sulfates, and carbonaceous mass in Federal reference method fine particulate matter for six eastern cities. J Air Waste Manage Assoc 56:500–511CrossRefGoogle Scholar
  12. Fuzzi S, Decesari S, Facchini MC, Matta E, Mircea M, Tagliavini E (2001) A simplified model of the water soluble organic component of atmospheric aerosols. Geophys Res Lett 28:4079–4082.  https://doi.org/10.1029/2001GL013418 CrossRefGoogle Scholar
  13. Gilardoni S et al (2009) Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms. Atmos Chem Phys 9:5417–5432CrossRefGoogle Scholar
  14. Kiss G, Varga B, Galambos I, Ganszky I (2002) Characterization of water-soluble organic matter isolated from atmospheric fine aerosol. J Geophys Res 107:ICC 1-1–ICC 1-8.  https://doi.org/10.1029/2001jd000603 CrossRefGoogle Scholar
  15. Krivácsy Z et al (2001) Study of the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch. J Atmos Chem 39:235–259CrossRefGoogle Scholar
  16. Kroll JH et al (2011) Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat Chem 3:133–139CrossRefGoogle Scholar
  17. Lopez-Hilfiker FD et al (2014) A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmos Meas Tech 7:983–1001CrossRefGoogle Scholar
  18. Mazzoleni LR, Ehrmann BM, Shen XH, Marshall AG, Collett JL Jr (2010) Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 44:3690–3697CrossRefGoogle Scholar
  19. McLafferty FW, Turecek F (1993) Interpretation of mass spectra, 2nd edn. University Science Books, Mill ValleyGoogle Scholar
  20. Mysak ER, Smith JD, Ashby PD, Newberg JT, Wilson KR, Bluhm H (2011) Competitive reaction pathways for functionalization and volatilization in the heterogeneous oxidation of coronene thin films by hydroxyl radicals and ozone. Phys Chem Chem Phys 13:7554–7564.  https://doi.org/10.1039/C0CP02323J CrossRefGoogle Scholar
  21. Nguyen HP, Schug KA (2008) The advantages of ESI-MS detection in conjunction with HILIC mode separations: fundamentals and applications. J Sep Sci 31:1465–1480CrossRefGoogle Scholar
  22. O’Brien RJ, Crabtree JH, Holmes JR, Hoggan MC, Bockian AH (1975) Formation of photochemical aerosol from hydrocarbons. Atmos Anal Environ Sci Technol 9:577–582CrossRefGoogle Scholar
  23. Orasche J, Schnelle-Kreis J, Abbaszade G, Zimmermann R (2011) Technical note: in-situ derivatization thermal desorption GC-TOFMS for direct analysis of particle-bound non-polar and polar organic species. Atmos Chem Phys 11:8977–8993CrossRefGoogle Scholar
  24. Pang Y, Turpin BJ, Gundel LA (2006) On the importance of organic oxygen for understanding organic aerosol particles. Aerosol Sci Technol 40:128–133CrossRefGoogle Scholar
  25. Riemann B (1868) Über der Begriff eines bestimmten Integrals und den Umfang seiner Gültigkeit. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13:87–132Google Scholar
  26. Riggio GM (2015) Development and application of thermal/optical- quadrupole TOA-QMS mass spectrometry for quantitative analysis of major particulate matter constituents, M.S. Thesis. University of Nevada, Reno, Nevada, USAGoogle Scholar
  27. Riggio GM, Chow JC, Cropper PM, Wang XL, Yatavelli RLN, Yang XF, Watson JG (2018) Feasibility of coupling a thermal/optical carbon analyzer to a quadrupole mass spectrometer for enhanced PM2.5 speciation. J Air Waste Manage Assoc 68:463–476CrossRefGoogle Scholar
  28. Robinson AL, Grieshop AP, Donahue NM, Hunt SW (2010) Updating the conceptual model for fine particle mass emissions from combustion systems. J Air Waste Manage Assoc 60:1204–1222CrossRefGoogle Scholar
  29. Strader R, Lurmann FW, Pandis SN (1999) Evaluation of secondary organic aerosol formation in winter. Atmos Environ 33:4849–4863CrossRefGoogle Scholar
  30. Timko MT et al (2009) Sampling artifacts from conductive silicone tubing. Aerosol Sci Technol 43:855–865CrossRefGoogle Scholar
  31. Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35:602–610CrossRefGoogle Scholar
  32. Watson JG, Chow JC, Bowen JL, Lowenthal DH, Hering SV, Ouchida P, Oslund W (2000) Air quality measurements from the Fresno Supersite. J Air Waste Manage Assoc 50:1321–1334CrossRefGoogle Scholar
  33. Williams BJ, Goldstein AH, Kreisberg NM, Hering SV (2006) An in situ instrument for speciated organic composition of atmospheric aerosols: thermal desorption aerosol GC/MS-FID (TAG). Aerosol Sci Technol 40:627–638CrossRefGoogle Scholar
  34. Williams BJ et al (2014) The first combined thermal desorption aerosol gas chromatograph-aerosol mass spectrometer (TAG-AMS). Aerosol Sci Technol 48:358–370CrossRefGoogle Scholar
  35. Yatavelli RLN, Thornton JA (2010) Particulate organic matter detection using a micro-orifice volatilization impactor coupled to a chemical ionization mass spectrometer (MOVI-CIMS). Aerosol Sci Technol 44:61–74CrossRefGoogle Scholar
  36. Young DE et al (2016) Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California Atmos. Chem Phys 16:5427–5451.  https://doi.org/10.5194/acp-16-5427-2016 CrossRefGoogle Scholar

Copyright information

© Institute of Earth Environment, Chinese Academy Sciences 2018

Authors and Affiliations

  • Judith C. Chow
    • 1
    • 2
    • 3
    Email author
  • Gustavo M. Riggio
    • 1
  • Xiaoliang Wang
    • 1
  • L.-W. Antony Chen
    • 4
  • John G. Watson
    • 1
    • 2
    • 3
  1. 1.Division of Atmospheric SciencesDesert Research InstituteRenoUSA
  2. 2.Graduate FacultyUniversity of NevadaRenoUSA
  3. 3.State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth EnvironmentChinese Academy of SciencesXi’anPeople’s Republic of China
  4. 4.Department of Environmental and Occupational HealthUniversity of NevadaLas VegasUSA

Personalised recommendations