Advertisement

Second language use rather than second language knowledge relates to changes in white matter microstructure

  • Nicola Del MaschioEmail author
  • Simone Sulpizio
  • Michelle Toti
  • Camilla Caprioglio
  • Gianpaolo Del Mauro
  • Davide Fedeli
  • Jubin Abutalebi
Research Paper
  • 45 Downloads

Abstract

Learning and learning to regulate more than one language is shown to have an impact on the structural connectivity of the brain in networks related to language processing and executive control. The available evidence remains however variable in terms of the occurrence, localization and extent of these effects. Variability likely depends on the fact that grouping heterogeneous linguistic profiles under a dichotomous condition (bilingualism vs. monolingualism) may obscure critical aspects of language experience underlying white matter changes. Here, we treated the main quantifiable features in which bilingual experience can be partitioned—that is, age of acquisition, proficiency and use of a second language—as continuous variables, and tested their effects on a sample of young adult participants. Findings indicate that the time spent using a second language, rather than the age of acquisition or knowledge of that language, significantly modulates white matter microstructure in a bilateral cingulo-frontal cluster encompassing structures primarily related to language control. Taken together, these data point to a usage-dependent remodeling of cingulo-frontal connections, and substantiate the conceptualization of bilingualism as a complex and dynamic experience.

Keywords

Bilingualism Second language use Structural connectivity White matter microstructure 

Notes

Acknowledgements

We thank Dr. Silvio Conte for the technical assistance at C.E.R.M.A.C., Vita-Salute San Raffaele University/San Raffaele Hospital.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R., et al. (2012). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, 22(9), 2076–2086.  https://doi.org/10.1093/cercor/bhr287.CrossRefPubMedGoogle Scholar
  2. Abutalebi, J., & Green, D. W. (2016). Neuroimaging of language control in bilinguals: Neural adaptation and reserve. Bilingualism Language and Cognition, 19(4), 689–698.  https://doi.org/10.1017/S1366728916000225.CrossRefGoogle Scholar
  3. Almairac, F., Herbet, G., Moritz-Gasser, S., de Champfleur, N. M., & Duffau, H. (2015). The left inferior fronto-occipital fasciculus subserves language semantics: A multilevel lesion study. Brain Structure and Function, 220(4), 1983–1995.  https://doi.org/10.1007/s00429-014-0773-1.CrossRefPubMedGoogle Scholar
  4. Anderson, J. A., Grundy, J. G., De Frutos, J., Barker, R. M., Grady, C., & Bialystok, E. (2018). Effects of bilingualism on white matter integrity in older adults. NeuroImage, 167, 143–150.  https://doi.org/10.1016/j.neuroimage.2017.11.038.CrossRefPubMedGoogle Scholar
  5. Andersson, J. L., Graham, M. S., Zsoldos, E., & Sotiropoulos, S. N. (2016). Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. NeuroImage, 141, 556–572.  https://doi.org/10.1016/j.neuroimage.2016.06.058.CrossRefPubMedGoogle Scholar
  6. Andersson, J. L., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage, 20(2), 870–888.  https://doi.org/10.1016/S1053-8119(03)00336-7.CrossRefPubMedGoogle Scholar
  7. Andersson, J. L., & Sotiropoulos, S. N. (2016). An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage, 125, 1063–1078.  https://doi.org/10.1016/j.neuroimage.2015.10.019.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Assaf, Y., & Pasternak, O. (2008). Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review. Journal of Molecular Neuroscience, 34(1), 51–61.  https://doi.org/10.1007/s12031-007-0029-0.CrossRefPubMedGoogle Scholar
  9. Avila, C., González, J., Parcet, M. A., & Belloch, V. (2004). Selective alteration of native, but not second language articulation in a patient with foreign accent syndrome. NeuroReport, 15(14), 2267–2270.  https://doi.org/10.1097/00001756-200410050-00025.CrossRefPubMedGoogle Scholar
  10. Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8(9), 1148.  https://doi.org/10.1038/nn1516.CrossRefPubMedGoogle Scholar
  11. Bubb, E. J., Metzler-Baddeley, C., & Aggleton, J. P. (2018). The cingulum bundle: Anatomy, function, and dysfunction. Neuroscience and Biobehavioral Reviews, 92, 104–127.  https://doi.org/10.1016/j.neubiorev.2018.05.008.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Calabria, M., Costa, A., Green, D. W., & Abutalebi, J. (2018). Neural basis of bilingual language control. Annals of the New York Academy of Sciences, 1426(1), 221–235.  https://doi.org/10.1111/nyas.13879.CrossRefGoogle Scholar
  13. Coggins, P. E., Kennedy, T. J., & Armstrong, T. A. (2004). Bilingual corpus callosum variability. Brain and Language, 89(1), 69–75.  https://doi.org/10.1016/S0093-934X(03)00299-2.CrossRefPubMedGoogle Scholar
  14. Colombo, L., Sartori, G., & Brivio, C. (2002). Stima del quoziente intellettivo tramite l’applicazione del TIB (test breve di Intelligenza). Giornale Italiano di Psicologia, 29(3), 613–638.  https://doi.org/10.1421/1256.CrossRefGoogle Scholar
  15. Crosson, B. A. (1992). Subcortical functions in language and memory. New York: Guilford Press.Google Scholar
  16. Cummine, J., & Boliek, C. A. (2013). Understanding white matter integrity stability for bilinguals on language status and reading performance. Brain Structure and Function, 218(2), 595–601.  https://doi.org/10.1007/s00429-012-0466-6.CrossRefPubMedGoogle Scholar
  17. Del Maschio, N., Fedeli, D., & Abutalebi, J. (2018). Bilingualism and Aging: Why Research Should Continue. Linguistic Approaches to Bilingualism.  https://doi.org/10.1075/lab.18032.del. (online print).CrossRefGoogle Scholar
  18. Del Maschio, N., Sulpizio, S., Fedeli, D., Ramanujan, K., Ding, G., Weekes, B. S., et al. (2019). ACC sulcal patterns and their modulation on cognitive control efficiency across lifespan: A neuroanatomical study on bilinguals and monolinguals. Cerebral Cortex, 29(7), 3091–3101.  https://doi.org/10.1093/cercor/bhy175.CrossRefPubMedGoogle Scholar
  19. DeLuca, V., Rothman, J., Bialystok, E., & Pliatsikas, C. (2019). Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proceedings of the National Academy of Sciences, 116(15), 7565–7574.  https://doi.org/10.1073/pnas.1811513116.CrossRefGoogle Scholar
  20. Elmer, S., Hänggi, J., Meyer, M., & Jäncke, L. (2011). Differential language expertise related to white matter architecture in regions subserving sensory-motor coupling, articulation, and interhemispheric transfer. Human Brain Mapping, 32(12), 2064–2074.  https://doi.org/10.1002/hbm.21169.CrossRefPubMedGoogle Scholar
  21. Felton, A., Vazquez, D., Ramos-Nunez, A. I., Greene, M. R., Macbeth, A., Hernandez, A. E., et al. (2017). Bilingualism influences structural indices of interhemispheric organization. Journal of neurolinguistics, 42, 1–11.  https://doi.org/10.1016/j.jneuroling.2016.10.004.CrossRefPubMedGoogle Scholar
  22. Fields, R. D. (2015). A new mechanism of nervous system plasticity: Activity-dependent myelination. Nature Reviews Neuroscience, 16(12), 756.  https://doi.org/10.1038/nrn4023.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fields, R. D., & Dutta, D. J. (2019). Treadmilling model for plasticity of the myelin sheath. Trends in Neurosciences, 42(7), 443–447.  https://doi.org/10.1016/j.tins.2019.04.002.CrossRefPubMedGoogle Scholar
  24. Gazzaniga, M. S. (2005). Forty-five years of split-brain research and still going strong. Nature Reviews Neuroscience, 6(8), 653.  https://doi.org/10.1038/nrn1723.CrossRefPubMedGoogle Scholar
  25. Gazzaniga, M. S., Bogen, J. E., & Sperry, R. W. (1962). Some functional effects of sectioning the cerebral commissures in man. Proceedings of the National Academy of Sciences, 48(10), 1765–1769.  https://doi.org/10.1073/pnas.48.10.1765.CrossRefGoogle Scholar
  26. Goldrick, M., Runnqvist, E., & Costa, A. (2014). Language switching makes pronunciation less nativelike. Psychological Science, 25(4), 1031–1036.  https://doi.org/10.1177/0956797613520014 CrossRefPubMedGoogle Scholar
  27. Green, D. W., & Abutalebi, J. (2013). Language control in bilinguals: The adaptive control hypothesis. Journal of Cognitive Psychology, 25(5), 515–530.  https://doi.org/10.1080/20445911.2013.796377.CrossRefPubMedGoogle Scholar
  28. Hartsuiker, R. J., Pickering, M. J., & Veltkamp, E. (2004). Is syntax separate or shared between languages? Cross-linguistic syntactic priming in Spanish–English bilinguals. Psychological Science, 15(6), 409–414.  https://doi.org/10.1111/j.0956-7976.2004.00693.x CrossRefPubMedGoogle Scholar
  29. Hervais-Adelman, A., Moser-Mercer, B., Michel, C. M., & Golestani, N. (2014). fMRI of simultaneous interpretation reveals the neural basis of extreme language control. Cerebral Cortex, 25(12), 4727–4739.  https://doi.org/10.1093/cercor/bhu158.CrossRefPubMedGoogle Scholar
  30. Hofstetter, S., Friedmann, N., & Assaf, Y. (2017). Rapid language-related plasticity: microstructural changes in the cortex after a short session of new word learning. Brain Structure and Function, 222(3), 1231–1241.  https://doi.org/10.1007/s00429-016-1273-2.CrossRefPubMedGoogle Scholar
  31. Hofstetter, S., Tavor, I., Tzur Moryosef, S., & Assaf, Y. (2013). Short-term learning induces white matter plasticity in the fornix. Journal of Neuroscience, 33(31), 12844–12850.CrossRefPubMedGoogle Scholar
  32. Hosoda, C., Tanaka, K., Nariai, T., Honda, M., & Hanakawa, T. (2013). Dynamic neural network reorganization associated with second language vocabulary acquisition: A multimodal imaging study. Journal of Neuroscience, 33(34), 13663–13672.  https://doi.org/10.1523/JNEUROSCI.0410-13.2013.CrossRefPubMedGoogle Scholar
  33. Kousaie, S., Chai, X. J., Sander, K. M., & Klein, D. (2017). Simultaneous learning of two languages from birth positively impacts intrinsic functional connectivity and cognitive control. Brain and Cognition, 117, 49–56.  https://doi.org/10.1016/j.bandc.2017.06.003.CrossRefPubMedGoogle Scholar
  34. Kuhl, P. K., Stevenson, J., Corrigan, N. M., van den Bosch, J. J., Can, D. D., & Richards, T. (2016). Neuroimaging of the bilingual brain: Structural brain correlates of listening and speaking in a second language. Brain and Language, 162, 1–9.CrossRefPubMedGoogle Scholar
  35. Luk, G., & Bialystok, E. (2013). Bilingualism is not a categorical variable: Interaction between language proficiency and usage. Journal of Cognitive Psychology, 25(5), 605–621.  https://doi.org/10.1080/20445911.2013.795574.CrossRefPubMedGoogle Scholar
  36. Luk, G., Bialystok, E., Craik, F. I., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. Journal of Neuroscience, 31(46), 16808–16813.  https://doi.org/10.1523/JNEUROSCI.4563-11.2011.CrossRefPubMedGoogle Scholar
  37. Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G., Wang, R., Caviness, V. S., Jr., et al. (2004). Segmentation of subcomponents within the superior longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cerebral Cortex, 15(6), 854–869.  https://doi.org/10.1093/cercor/bhh186.CrossRefPubMedGoogle Scholar
  38. Malt, B. C., Li, P., Pavlenko, A., Zhu, H., & Ameel, E. (2015). Bidirectional lexical interaction in late immersed Mandarin-English bilinguals. Journal of Memory and Language, 82, 86–104.  https://doi.org/10.1016/j.jml.2015.03.001.CrossRefGoogle Scholar
  39. Mamiya, P. C., Richards, T. L., Coe, B. P., Eichler, E. E., & Kuhl, P. K. (2016). Brain white matter structure and COMT gene are linked to second-language learning in adults. Proceedings of the National Academy of Sciences, 113(26), 7249–7254.  https://doi.org/10.1073/pnas.1606602113.CrossRefGoogle Scholar
  40. Martino, J., Brogna, C., Robles, S. G., Vergani, F., & Duffau, H. (2010). Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex, 46(5), 691–699.  https://doi.org/10.1016/j.cortex.2009.07.015.CrossRefPubMedGoogle Scholar
  41. Mohades, S. G., Struys, E., Van Schuerbeek, P., Mondt, K., Van De Craen, P., & Luypaert, R. (2012). DTI reveals structural differences in white matter tracts between bilingual and monolingual children. Brain Research, 1435, 72–80.  https://doi.org/10.1016/j.brainres.2011.12.005.CrossRefPubMedGoogle Scholar
  42. Mori, S., Wakana, S., Van Zijl, P. C., & Nagae-Poetscher, L. M. (2005). MRI atlas of human white matter. Amsterdam: Elsevier.Google Scholar
  43. Nelson, H. E. (1982). National Adult Reading Test (NART): For the assessment of premorbid intelligence in patients with dementia: Test manual. Windsor: Nfer-Nelson.Google Scholar
  44. Nichols, E. S., & Joanisse, M. F. (2016). Functional activity and white matter microstructure reveal the independent effects of age of acquisition and proficiency on second-language learning. NeuroImage, 143, 15–25.  https://doi.org/10.1016/j.neuroimage.2016.08.053.CrossRefPubMedGoogle Scholar
  45. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.  https://doi.org/10.1016/j.neuroimage.2008.10.055.CrossRefPubMedGoogle Scholar
  46. Perani, D., Farsad, M., Ballarini, T., Lubian, F., Malpetti, M., Fracchetti, A., et al. (2017). The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer’s dementia. Proceedings of the National Academy of Sciences, 114(7), 1690–1695.  https://doi.org/10.1073/pnas.1610909114.CrossRefGoogle Scholar
  47. Pliatsikas, C., DeLuca, V., Moschopoulou, E., & Saddy, J. D. (2017). Immersive bilingualism reshapes the core of the brain. Brain Structure and Function, 222(4), 1785–1795.  https://doi.org/10.1007/s00429-016-1307-9.CrossRefPubMedGoogle Scholar
  48. Pliatsikas, C., Moschopoulou, E., & Saddy, J. D. (2015). The effects of bilingualism on the white matter structure of the brain. Proceedings of the National Academy of Sciences, 112(5), 1334–1337.  https://doi.org/10.1073/pnas.1414183112.CrossRefGoogle Scholar
  49. Rahmani, F., Sobhani, S., & Aarabi, M. H. (2017). Sequential language learning and language immersion in bilingualism: Diffusion MRI connectometry reveals microstructural evidence. Experimental Brain Research, 235(10), 2935–2945.  https://doi.org/10.1007/s00221-017-5029-x.CrossRefPubMedGoogle Scholar
  50. Rossi, E., Cheng, H., Kroll, J. F., Diaz, M. T., & Newman, S. D. (2017). Changes in white-matter connectivity in late second language learners: Evidence from diffusion tensor imaging. Frontiers in Psychology, 8, 2040.  https://doi.org/10.3389/fpsyg.2017.02040.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schlegel, A. A., Rudelson, J. J., & Tse, P. U. (2012). White matter structure changes as adults learn a second language. Journal of Cognitive Neuroscience, 24(8), 1664–1670.  https://doi.org/10.1162/jocn_a_00240.CrossRefPubMedGoogle Scholar
  52. Schnur, T. T., Schwartz, M. F., Brecher, A., & Hodgson, C. (2006). Semantic interference during blocked-cyclic naming: Evidence from aphasia. Journal of Memory and Language, 54(2), 199–227.  https://doi.org/10.1016/j.jml.2005.10.002.CrossRefGoogle Scholar
  53. Singh, N. C., Rajan, A., Malagi, A., Ramanujan, K., Canini, M., Della Rosa, P. A., et al. (2018). Microstructural anatomical differences between bilinguals and monolinguals. Bilingualism Language and Cognition, 21(5), 995–1008.  https://doi.org/10.1017/S1366728917000438.CrossRefGoogle Scholar
  54. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 1487–1505.  https://doi.org/10.1016/j.neuroimage.2006.02.024.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, 208–219.  https://doi.org/10.1016/j.neuroimage.2004.07.051.CrossRefGoogle Scholar
  56. Smith, S. M., Johansen-Berg, H., Jenkinson, M., Rueckert, D., Nichols, T. E., Miller, K. L., et al. (2007). Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nature Protocols, 2(3), 499.  https://doi.org/10.1038/nprot.2007.45.CrossRefPubMedGoogle Scholar
  57. Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 44(1), 83–98.  https://doi.org/10.1016/j.neuroimage.2008.03.061.CrossRefPubMedGoogle Scholar
  58. Sulpizio, S., Toti, M., Del Maschio, N., Costa, A., Fedeli, D., Job, R., et al. (2019). Are you really cursing? Neural processing of taboo words in native and foreign language. Brain and Language, 194, 84–92.  https://doi.org/10.1016/j.bandl.2019.05.003.CrossRefPubMedGoogle Scholar
  59. Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., Komuro, N., et al. (2010). Training of working memory impacts structural connectivity. Journal of Neuroscience, 30(9), 3297–3303.  https://doi.org/10.1523/JNEUROSCI.4611-09.2010.CrossRefPubMedGoogle Scholar
  60. Taylor, R. (1990). Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 6, 35–39.  https://doi.org/10.1177/875647939000600106 CrossRefGoogle Scholar
  61. Wallesch, C.-W., & Papagno, C. (1988). Subcortical aphasia. In F. C. Rose, R. Whurr, & M. A. Wyke (Eds.), Aphasia (pp. 256–287). London: Whurr Pub.Google Scholar
  62. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. Neuroimage, 92, 381–397.  https://doi.org/10.1016/j.neuroimage.2014.01.060.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., et al. (2009). Bayesian analysis of neuroimaging data in FSL. Neuroimage, 45(1), S173–S186.  https://doi.org/10.1016/j.neuroimage.2008.10.055.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Centre for Neurolinguistics and Psycholinguistics (CNPL)Vita-Salute San Raffaele UniversityMilanItaly

Personalised recommendations