Synthesis and characterizations of MIL-140B-Al2O3/YSZ ceramic membrane using solvothermal method for seawater desalination

  • Nur Zhatul Shima Yahaya
  • Syafikah Huda Paiman
  • Norfazliana Abdullah
  • Nizar Mu’ammar Mahpoz
  • Amirul Afiat Raffi
  • Mukhlis A. RahmanEmail author
  • Khairul Hamimah Abas
  • Azian Abd Aziz
  • Mohd Hafiz Dzarfan Othman
  • Juhana Jaafar


Membranes for desalination using forward osmosis (FO) should be stable and ordered, with high water flux and low reverse solute flux performances. In this study, metal-organic framework (MOF) was embedded on a ceramic membrane surface in order to make it feasible to be used in FO process. Two-stage preparation steps were taken involving sol-gel Pechini’s method for membrane surface modification, followed by solvothermal synthesis to finally deposit the MIL-140B (MOF) on the membrane’s surface. 1D structure of our MOF (MIL-140B) was observed using field-emission scanning electron microscopy (FE-SEM) and its unaffected crystallinity was proved using X-ray diffraction (XRD) regardless of changes in the study parameters (reactant concentration and time of synthesis). Brunauer-Emmett-Teller (BET) conducted in this study displayed type IV isotherm pattern with hysteresis loop which signify MIL-140B as a mesoporous particle. The final performance results concluded that 0.3 M reactant concentration under 16 h synthesis time was the best preparation condition since sample D gave excellent water flux (12.023 L/m2 h) and showed remarkable drop in the reverse solute flux (0.094 L/m2 h) performances. These results indicate a potential of high FO membrane efficiency as comparable to the best in the literature.

Graphical abstract



Metal-organic framework Ceramic membrane Sol-gel Pechini’s method Solvothermal synthesis 



The authors gratefully acknowledge the financial support from various parties, namely, the Islamic Educational, Scientific and Cultural Organization (ISESCO) (R.J130000.7351.4B368) Malaysia Ministry of Higher Education (MOHE) through FRGS (0.J130000.7823.4F947), the Higher Institution Centre of Excellence (HICoE) Research Grant (R.J090301.7846.4 J176), and Universiti Teknologi Malaysia (UTM) through the Research University grant (Q.J130000.2446.04G30, Q.J130000.3551.05G77, Q.J130000.2523.19H79). Appreciation also goes to UTM Research Management Centre for both financial and technical supports.


  1. 1.
    Liu, X., Demir, N.K., Wu, Z., Li, K.: Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc.137(22), 6999–7002 (2015)CrossRefGoogle Scholar
  2. 2.
    Rowsell, J.L.C., Yaghi, O.M.: Metal – organic frameworks : a new class of porous materials. 73, 3–14 (2004)Google Scholar
  3. 3.
    Trapani, F., Polyzoidis, A., Loebbecke, S., Piscopo, C.G.: On the general water harvesting capability of metal-organic frameworks under well-defined climatic conditions. Microporous Mesoporous Mater.230, 20–24 (2016)CrossRefGoogle Scholar
  4. 4.
    Qiu, S., Xue, M., Zhu, G.: Metal-organic framework membranes: from synthesis to separation application. Chem. Soc. Rev.43, 6116–6140 (2014)CrossRefGoogle Scholar
  5. 5.
    Fu, J., Das, S., Xing, G., Ben, T., Valtchev, V., Qiu, S.: Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. J. Am. Chem. Soc.138(24), 7673–7680 (2016)CrossRefGoogle Scholar
  6. 6.
    Guillerm, V., Ragon, F., Dan-Hardi, M., Devic, T., Vishnuvarthan, M., Campo, B., Vimont, A., Clet, G., Yang, Q., Maurin, G., Férey, G., Vittadini, A., Gross, S., Serre, C.: A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. Angew. Chem. Int. Ed.51(37), 9267–9271 (2012)CrossRefGoogle Scholar
  7. 7.
    Yang, J., Ma, J.J., Zhang, D.M., Xue, T., Guan, Y.J.: Effect of organic moieties (phenyl, naphthalene, and biphenyl) in Zr-MIL-140 on the hydrogenation activity of Pd nanoparticles. Chin. Chem. Lett.27(11), 1679–1682 (2016)CrossRefGoogle Scholar
  8. 8.
    Lee, Y.R., Kim, J., Ahn, W.S.: Synthesis of metal-organic frameworks: a mini review. Korean J. Chem. Eng.30(9), 1667–1680 (2013)CrossRefGoogle Scholar
  9. 9.
    Van De Voorde, B., Borges, D., Vermoortele, F., Wouters, R., Bozbiyik, B., Denayer, J., Taulelle, F., Martineau, C., Serre, C., Maurin, G., De Vos, D.: Isolation of renewable phenolics by adsorption on ultrastable hydrophobic MIL-140 METAL – ORGANIC FRAMEWORKS. 140, 3159–3166 (2015)Google Scholar
  10. 10.
    Gutov, O.V., Bury, W., Gomez-Gualdron, D.A., Krungleviciute, V., Fairen-Jimenez, D., Mondloch, J.E., Sarjeant, A.A., Al-Juaid, S.S., Snurr, R.Q., Hupp, J.T., Yildirim, T., Farha, O.K.: Water-stable zirconium-based metal organic framework material with high-surface area and gas-storage capacities. Chem. - A Eur. J.20(39), 12389–12393 (2014)CrossRefGoogle Scholar
  11. 11.
    Liang, W., Babarao, R., D’Alessandro, D.M.: Microwave-assisted solvothermal synthesis and optical properties of tagged MIL-140A metal-organic frameworks. Inorg. Chem.52(22), 12878–12880 (2013)CrossRefGoogle Scholar
  12. 12.
    Ma, S.Q., Wang, X.S., Collier, C.D., Manis, E.S., Zhou, H.C.: Ultramicroporous metal-organic framework based on 9,10-anthracenedicarboxylate for selective gas adsorption. Inorg. Chem.46(21), 8499–8501 (2007)CrossRefGoogle Scholar
  13. 13.
    Liang, W., D’Alessandro, D.M.: Microwave-assisted solvothermal synthesis of zirconium oxide based metal-organic frameworks. Chem. Commun.49(35), 3706–37088 (2013)CrossRefGoogle Scholar
  14. 14.
    Glater, J., Hong, S., Elimelech, M.: The search for a chlorine-resistant reverse osmosis membrane. 95, 325–345 (1994)Google Scholar
  15. 15.
    El-saied, H., Basta, A.H., Barsou, B.N., Elberry, M.M.: Cellulose membranes for reverse osmosis Part I . RO cellulose acetate membranes including a composite with polypropylene. 159, (2003)Google Scholar
  16. 16.
    Zhu, Y., Gupta, K.M., Liu, Q., Jiang, J., Caro, J., Huang, A.: Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes. DES. 385, 75–82 (2016)CrossRefGoogle Scholar
  17. 17.
    Zirehpour, A., Rahimpour, A., Ulbricht, M.: Nano-sized metal organic framework to improve the structural properties and desalination performance of thin film composite forward osmosis membrane. J. Memb. Sci.531, 59–67 (2017)CrossRefGoogle Scholar
  18. 18.
    Zirehpour, A., Rahimpour, A., Khoshhal, S., Firouzjaei, M.D., Ghoreyshi, A.A.: The impact of MOF feasibility to improve the desalination performance and antifouling properties of FO membranes. RSC Adv.6(74), 70174–70185 (2016)CrossRefGoogle Scholar
  19. 19.
    Lee, J.-Y., She, Q., Huo, F., Tang, C.Y.: Metal-organic framework – based porous matrix membranes for improving mass transfer in forward osmosis membranes. J. Membr. Sci.492, 392–399 (2015)CrossRefGoogle Scholar
  20. 20.
    C. Dey and T. Kundu, “Crystalline metal-organic frameworks (MOFs): synthesis, structure and function,” pp. 3–10, 2014.Google Scholar
  21. 21.
    Agoudjil, N., Kermadi, S., Larbot, A.: Synthesis of inorganic membrane by sol–gel process. 223, 417–424 (2008)Google Scholar
  22. 22.
    Li, W., Zhang, Y., Li, Q., Zhang, G.: Metal-organic framework composite membranes: Synthesis and separation applications. Chem. Eng. Sci.135, 232–257 (2015)CrossRefGoogle Scholar
  23. 23.
    Rahman, M.A., Ha, M., Othman, D., Ismail, A.F.: Morphological study of yttria-stabilized zirconia hollow fibre membrane prepared using phase inversion / sintering technique. 41, 12543–12553 (2015)Google Scholar
  24. 24.
    Zhang, X., Liu, Y., Kong, L., Liu, H., Qiu, J., Han, W., Weng, L., Yeung, K.L., Zhu, W.: A simple and scalable method for preparing low-defect ZIF-8 tubular membranes. J. Mater. Chem.1, 10635–10638CrossRefGoogle Scholar
  25. 25.
    Kandiah, M., Nilsen, M.H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., Larabi, C., Quadrelli, E.A., Bonino, F., Lillerud, K.P., Lyon, D.: Synthesis and stability of tagged UiO-66 Zr-MOFs. 10, 6632–6640 (2010)Google Scholar
  26. 26.
    Burtch, N.C., Jasuja, H., Walton, K.S.: Water stability and adsorption in metal − organic frameworks. Chem. Rev.114(20), 10575–10612 (2014)CrossRefGoogle Scholar
  27. 27.
    Mu, N., Abdullah, N., Zahir, M., Pauzi, M., Rahman, M.A., Abas, K.H., Aziz, A.A., Hafiz, M., Othman, D., Jaafar, J., Ismail, A.F.: Synthesis and performance evaluation of zeolitic imidazolate framework-8 membranes deposited onto alumina hollow fiber for desalination. 36, 3, 439–449 (2019)Google Scholar
  28. 28.
    Liang, W., et al.: Tuning the cavities of zirconium-based MIL-140 frameworks to modulate CO2 adsorption. Chem. Commun.51(56), 11286–11289 (2015)CrossRefGoogle Scholar
  29. 29.
    Li, P., Chen, J., Zhang, J., Wang, X., Li, P., Chen, J., Zhang, J., Wang, X.: Water stability and competition effects toward CO2 adsorption on metal organic frameworks water stability and competition effects toward CO2 adsorption on metal organic frameworks. 2119, (2015)Google Scholar
  30. 30.
    V. V Butova, A. P. Budnyk, A. A. Guda, K. A. Lomachenko, A. L. Bugaev, A. V Soldatov, S. M. Chavan, and S. Øien-ødegaard, “Modulator effect in UiO-66-NDC ( 1 , 4-naphthalenedicarboxylic acid ) synthesis and comparison with UiO-67-NDC isoreticular metal − organic frameworks,” no. 2017Google Scholar
  31. 31.
    Pure, U.O.F.: Provisional International Union Of Pure and Applied Chemistry Commission On Colloid and Surface Chemistry Subcommittee on Reporting Gas Adsorption Data * Reporting Physisorption Data For Gas / Solid Systems with Special Reference to the Determination of S. 54(11), (1982)Google Scholar
  32. 32.
    M. Thommes, K. Kaneko, A. V Neimark, J. P. Olivier, F. Rodriguez-reinoso, J. Rouquerol, and K. S. W. Sing, “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” 2015Google Scholar
  33. 33.
    Salvador, F., Salvador, A.: A review of the application of the BET equation to experimental data: the C parameter. Stud. Surf. Sci. Catal.144, 379–386 (2002)CrossRefGoogle Scholar
  34. 34.
    Li, X., Zhao, C., Yang, M., Yang, B., Hou, D., Wang, T.: Reduced graphene oxide-NH2 modified low pressure nanofiltration composite hollow fiber membranes with improved water flux and antifouling capabilities. Appl. Surf. Sci.419, 418–428 (2017)CrossRefGoogle Scholar
  35. 35.
    P. Sukitpaneenit and T. Chung, “High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production,” 2012Google Scholar
  36. 36.
    Phillip, W.A., Yong, J.U.I.S., Elimelech, M.: Reverse draw solute permeation in forward osmosis : modeling and experiments. 44(13), 5170–5176 (2010)Google Scholar
  37. 37.
    Cath, T.Y.: Solute coupled diffusion in osmotically driven membrane processes. 43(17), 6769–6775 (2009)Google Scholar
  38. 38.
    She, Q., Jin, X., Tang, C.Y.: Osmotic power production from salinity gradient resource by pressure retarded osmosis : Effects of operating conditions and reverse solute diffusion. J. Membr. Sci.401–402, 262–273 (2012)CrossRefGoogle Scholar
  39. 39.
    Fang, W., Liu, C., Shi, L., Wang, R.: Composite forward osmosis hollow fiber membranes: Integration of RO- and NF-like selective layers for enhanced organic fouling resistance. J. Membr. Sci.492, 147–155 (2015)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • Nur Zhatul Shima Yahaya
    • 1
  • Syafikah Huda Paiman
    • 1
  • Norfazliana Abdullah
    • 1
  • Nizar Mu’ammar Mahpoz
    • 1
  • Amirul Afiat Raffi
    • 1
  • Mukhlis A. Rahman
    • 1
    Email author
  • Khairul Hamimah Abas
    • 2
  • Azian Abd Aziz
    • 3
  • Mohd Hafiz Dzarfan Othman
    • 1
  • Juhana Jaafar
    • 1
  1. 1.Advanced Membrane Technology Research Centre (AMTEC)Universiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Department of Control and Mechatronics Engineering, School of Electrical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia
  3. 3.Language AcademyUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations