Thermodynamic study of zirconium carbide synthesis via a low-temperature pyrovacuum method
- 7 Downloads
Abstract
In this research, the thermodynamic aspect of the nano-sized zirconium carbide production is investigated via a facile, low-temperature and cost-effective carbothermal method under vacuum and argon atmospheres. The starting materials were zirconium acetate and sucrose as zirconium and carbon precursors, respectively. The gels were prepared based on 3, 4, 5, and 7 molar ratios of carbon to zirconium and heated at 1200 and 1400 °C under vacuum and argon atmospheres. The formation of zirconium carbides under different atmospheres were studied via thermogravimetric analysis and the results were compared. The phase composition and microstructural features were investigated using X-ray diffraction and scanning electron microscopy, respectively. According to the thermogravimetric results and performed thermodynamic calculations, it was revealed that the ZrC formation starts at 1200 °C under vacuum. It is also demonstrated that the formation of nano ZrC powder with crystallite sizes smaller than 30 nm, completely occurs after processing at 1400 °C in vacuum. The measured lattice parameter value of the optimized sample was equal to 4.7003 Å.
Keywords
Zirconium carbide Carbothermal reduction Pyrovacuum Thermo-gravimetry X-ray diffractionNotes
References
- 1.Ushakov, S.V., Navrotsky, A., Hong, Q., Walle, A.: Carbides and nitrides of zirconium and hafnium. Materials. 12, 2728 (2019)CrossRefGoogle Scholar
- 2.Arianpour, F., Golestanifard, F., Rezaie, H.R., Mazaheri, M., Celik, A., Kara, F., Fantozzi, G.: Processing, phase evaluation and mechanical properties of MoSi2 doped 4TaC-HfC based UHTCs consolidated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 56, 1–7 (2016)CrossRefGoogle Scholar
- 3.Zhou, Y., Heitmann, T.W., Fahrenholtz, W.G., Hilmas, G.E.: Synthesis of ZrCx with controlled carbon stoichiometry by low temperature solid state reaction. J. Eur. Ceram. Soc. 39, 2594–2600 (2019)CrossRefGoogle Scholar
- 4.Kim, J.H., Seo, M.: Influence of lattice strain on grain growth behavior of zirconium carbide. Ceram. Int. 44, 17204–17208 (2018)CrossRefGoogle Scholar
- 5.Giorgi, E., Grasso, S., Zapata-Solvas, E., Lee, W.E.: Reactive carbothermal reduction of ZrC and ZrOC using spark plasma sintering. Adv. Appl. Ceram. S1, S34–S47 (2018)CrossRefGoogle Scholar
- 6.Yu, L., Feng, L., Lee, H.I., Silvestroni, L., Sciti, D., Woo, Y.J., Lee, S.H.: Synthesis and densification of ultra-fine ZrC powders-effects of C/Zr ratio. Int. J. Refract. Met. Hard Mater. 81, 149–154 (2019)CrossRefGoogle Scholar
- 7.Zhang, M.X., Hu, Q.D., Huang, B., Li, J.Z., Li, J.G.: Study of formation behavior of ZrC in the Fe-Zr-C system during combustion synthesis. Int. J. Refract. Met. Hard Mater. 29, 596–600 (2011)CrossRefGoogle Scholar
- 8.Zhang, M.X., Huanga, B., Hua, Q.D., Lia, J.G.: Study of formation behavior of ZrC in the Cu-Zr-C system during combustion synthesis. Int. J. Refract. Met. Hard Mater. 31, 230–235 (2012)CrossRefGoogle Scholar
- 9.Li, J., Fu, Z.Y., Wang, W.M., Wang, H., Lee, S.H., Niihara, K.: Preparation of ZrC by self-propagating high-temperature synthesis. Ceram. Int. 36, 1681–1686 (2010)CrossRefGoogle Scholar
- 10.Hu, Q., Zhang, M., Luo, P., Song, M., Li, J.: Thermal explosion synthesis of ZrC particles and their mechanism of formation from Al-Zr-C elemental powders. Int. J. Refract. Met. Hard Mater. 35, 251–256 (2012)CrossRefGoogle Scholar
- 11.Nam, Y.S., Cui, X.M., Jeong, L., Lee, J.Y., Park, W.H.: Fabrication and characterization of zirconium carbide (ZrC) nanofibers with thermal storage property. Thin Solid Films. 517, 6531–6538 (2009)CrossRefGoogle Scholar
- 12.Combemale, L., Leconte, Y., Portier, X., Herlin-Boime, N., Reynaud, C.: Synthesis of nanosized zirconium carbide by laser pyrolysis route. J. Alloy Compound. 483, 468–472 (2009)CrossRefGoogle Scholar
- 13.Dolle, M., Gosset, D., Bogicevic, C., Karolak, F., Simeone, D., Baldinozzi, G.: Synthesis of nanosized zirconium carbide by a sol-gel route. J. Eur. Ceram. Soc. 27, 2061–2067 (2007)CrossRefGoogle Scholar
- 14.Zheng, Y., Zheng, Y., Wang, R., Wei, K.: Direct determination of carbothermal reduction temperature for preparing silicon carbide from the vacuum furnace thermobarogram. Vacuum. 82, 336–339 (2008)CrossRefGoogle Scholar
- 15.Wu, K., Zhang, G., Gou, H., Chou, K.: Preparation and purification of titanium carbide via vacuum carbothermic reduction of ilmenite. Vacuum. 151, 51–60 (2018)CrossRefGoogle Scholar
- 16.Sen, W., Sun, H., Yang, B., Xu, B., Ma, W., Liu, D., Dai, Y.: Preparation of titanium carbide powders by carbothermal reduction of titania/charcoal at vacuum condition. Int. J. Refract. Met. Hard Mater. 28, 628–632 (2010)CrossRefGoogle Scholar
- 17.Arianpour, F., Kazemi, F., Rezaie, H.R., Asjodi, A., Liu, J.: Nano zirconium carbide powder synthesis via carbothermal route. Defect Diffus Forum 334, 381–386 (2013)CrossRefGoogle Scholar
- 18.Sevastyanov, V.G., Simonenko, E.P., Ignatov, N.A., Ezhov, Y.S., Simonenko, N.P., Kuznetsov, N.T.: Synthesis of highly dispersed super-refractory tantalum-zirconium carbide Ta4ZrC5 and tantalum-hafnium carbide Ta4HfC5 via sol-gel technology. Russ. J. Inorg. Chem. 56, 1681–1687 (2011)CrossRefGoogle Scholar
- 19.Jenkins, R., Snyder, R.: Introduction to X-ray powder diffractometery. 2nd edition. John Wiley & Sons, USA (2012)Google Scholar
- 20.Saberi, A., Alinejad, B., Negahdari, Z., Kazemi, F., Almasi, A.: A novel method to low temperature synthesis of nanocrystalline forsterite. Mater. Res. Bull. 42, 666–673 (2007)CrossRefGoogle Scholar
- 21.Ebrahimi-Kahrizsangi, R., Amini-Kahrizsangi, E.: Zirconia carbothermal reduction: Non-isothermal kinetics. Int. J. Refract. Met. Hard Mater. 27, 637–641 (2009)CrossRefGoogle Scholar
- 22.Berger, L.M., Gruner, W., Langholf, E., Stolle, S.: On the mechanism of carbothermal reduction processes of TiO2 and ZrO2. Int. J. Refract. Met. Hard Mater. 17, 235–243 (1999)CrossRefGoogle Scholar
- 23.David, J., Trolliard, G., Gendre, M., Maitre, A.: TEM study of the reaction mechanisms involved in the carbothermal reduction of zirconia. J. Eur. Ceram. Soc. 33, 165–179 (2013)CrossRefGoogle Scholar
- 24.Ang, C., Williams, T., Seeber, A., Wang, H., Cheng, Y.: Synthesis and evolution of zirconium carbide via sol-gel route: features of nanoparticle oxide-carbon reactions. J. Am. Ceram. Soc. 96, 1099–1106 (2013)CrossRefGoogle Scholar
- 25.Shatynski, S.R.: The thermochemistry of transition metal carbides. Oxid. Met. 13, 105–118 (1979)CrossRefGoogle Scholar
- 26.Guillermet, A.F.: Analysis of thermochemical properties and phase stability in the zirconium-carbon system. J. Alloys Compound. 217, 69–89 (1995)CrossRefGoogle Scholar
- 27.Chase, M.W., Curnut, J.L., Downey, J.R., McDonald, R.A., Syverud, A.N., Valenzuela, E.A.: JANAF thermochemical Tables. J. Phys. Chem. Ref. Data. 11, 695–940 (1982)CrossRefGoogle Scholar
- 28.Gaskell, D.R., Laughlin, D.E.: Introduction to the thermodynamics of materials. 6th ed. CRC Press, New York (2017)Google Scholar
- 29.Fabris, S., Paxton, A.T., Finnis, M.W.: A stabilization mechanism of zirconia based oxygen vacancies only. Acta Mater. 50, 5171–5178 (2002)CrossRefGoogle Scholar
- 30.Schönfeld, K., Martin, H.P., Michaelis, A.: Pressureless sintering of ZrC with variable stoichiometry. J Adv Ceram 6, 165–175 (2017)CrossRefGoogle Scholar
- 31.Chu, A., Qin, M., Rafi-ud-din, Zhang, L., Lu, H., Jia, B., Qu, X.: Carbothermal synthesis of ZrC powders using a combustion synthesis precursor. Int. J. Refract. Met. Hard Mater. 36, 204–210 (2013)CrossRefGoogle Scholar
- 32.Sacks, M.D., Wang, C., Yang, Z., Jian, A.: Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors. J. Mater. Sci. 39, 6057–6066 (2004)CrossRefGoogle Scholar
- 33.Kelly, J.R., Denry, I.: Stabilized zirconia as a structural ceramic: an overview. Dent Mater 4, 289–298 (2008)CrossRefGoogle Scholar
- 34.Gendre, M., Maitre, A., Trolliard, G.: Synthesis of zirconium oxycarbide (ZrCxOy) powders: influence of stoichiometry on densification kinetics during spark plasma sintering and on mechanical properties. J. Eur. Ceram. Soc. 31, 2377–2385 (2011)CrossRefGoogle Scholar
- 35.Feng, L., Lee, S., Lee, H.: Nano-sized zirconium carbide powder: synthesis and densification using a spark plasma sintering apparatus. Int. J. Refract. Met. Hard Mater. 64, 98–105 (2017)CrossRefGoogle Scholar
- 36.Rejasse, F., Rapaud, O., Trolliard, G., Masson, O., Maitre, A.: Experimental investigation and thermodynamic evaluation of the C-O-Zr ternary system. RSC Adv. 106, 1–30 (2016)Google Scholar