Effect of Fe2O3 and MgO on the crystallization behaviour, sinterability and properties of the CaO-Al2O3-SiO2 glass-ceramics

  • Fengjuan Pei
  • Guohui ZhuEmail author
  • Peng Li
  • Hongwei Guo
  • Ping Yang


This study explores the roles of Fe2O3 (3–5 wt%) and/or MgO (0.6–2.4 wt%) on the crystallization behaviour, microstructure, sinterability and mechanical properties of 17.02CaO-7.04Al2O3-58.84SiO2 (CAS, wt%) glass-ceramics. With increasing Fe2O3 and/or MgO contents, the peak temperature of glass crystallization decreased, and the main crystal phase (wollastonite) was suppressed, while the secondary phases of hardystonite and diopside were crystallized and promoted. Wollastonite crystals grew larger, and their distribution became scattered as Fe2O3 and/or MgO contents increased. The concentrations of elemental Fe and Zn in the glass matrix influence the formation of hardystonite (Ca2ZnSi2O7), and Mg2+ can participate in the formation of diopside and melilite-type solid solution Ca2ZnSi2O7-Ca2MgSi2O7. Vickers hardness was decreased by the increasing amount of glass matrix while density was increased. The optimum heat treatment temperature range of the CAS glass-ceramics was narrowed by the addition of Fe2O3 and/or MgO due to rapid crystallization and a degree of fusion or overburning.


Glass-ceramics Sintering Wollastonite Diopside Hardystonite 



The authors thank Soochow University and China University of Petroleum for their support with the analysis.

Funding Information

This work was financially supported by the National Natural Science Foundation of China (No. 51704202, 51604169, 51604178) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJB450002).


  1. 1.
    Höland, W., Beall, G.H.: Glass Ceramic Technology, 2nd edn. Wiley, Hoboken (2012)CrossRefGoogle Scholar
  2. 2.
    Zanotto, E.D.: A bright future for glass-ceramics. Am. Ceram. Soc. Bull. 8, 19–27 (2010)Google Scholar
  3. 3.
    Karamanov, A., Gutzow, I., Penkov, I., Andreev, J., Bogdanov, B.: Diopside marble-like sintered glass-ceramics. Glastech. Ber. Glass Sci. Technol. 67, 202–206 (1994)Google Scholar
  4. 4.
    Lu, Z.Y., Lu, J.S., Li, X.B., Shao, G.Q.: Effect of MgO addition on sinterability, crystallization kinetics, and flexural strength of glass-ceramics from waste materials. Ceram. Int. 42, 3452–3459 (2016)CrossRefGoogle Scholar
  5. 5.
    Ren, X.Z., Zhang, W., Zhang, Y., Zhang, P.X., Liu, J.H.: Effects of Fe2O3 content on microstructure and mechanical properties of CaO-Al2O3-SiO2 system. Trans. Nonferrous Met. Soc. China. 25, 137–145 (2015)CrossRefGoogle Scholar
  6. 6.
    Yang Z.J., Li Y., Cang D.Q., Diao M. L., Guo W.B.: The influence of Fe2+ and Fe3+ on crystallization of CaO-Al2O3-SiO2-MgO system glass-ceramics. Mater. Sci. Technol. 2, 45-51, 60 (2012)Google Scholar
  7. 7.
    Yu, Q.C., Yan, C.P., Deng, Y., Feng, Y.B., Liu, D.C., Yang, B.: Effect of Fe2O3 on non-isothermal crystallization of CaO-MgO-Al2O3-SiO2 glass. Trans. Nonferrous Met. Soc. China. 25, 2279–2284 (2015)CrossRefGoogle Scholar
  8. 8.
    Wang, Z.J., Ni, W., Li, K.Q., Huang, X.Y., Zhu, L.P.: Crystallization characteristics of iron-rich glass ceramics prepared from nickel slag and blast furnace slag. Int. J. Miner. Metall. Mater. 4, 455–459 (2011)CrossRefGoogle Scholar
  9. 9.
    He, D.F., Gao, C., Pan, J.T., Xu, A.J.: Preparation of glass-ceramics with diopside as the main crystalline phase from low and medium titanium-bearing blast furnace slag. Ceram. Int. 44, 1384–1393 (2018)CrossRefGoogle Scholar
  10. 10.
    Francis, A.A.: Non-isothermal crystallization kinetics of a blast furnace slag glass. J. Am. Ceram. Soc. 7, 1859–1863 (2005)CrossRefGoogle Scholar
  11. 11.
    Zhao, Y., Chen, D.F., Bi, Y.Y., Long, M.J.: Preparation of low cost glass-ceramics from molten blast furnace slag. Ceram. Int. 38, 2495–2500 (2012)CrossRefGoogle Scholar
  12. 12.
    Khater, G.A., Abdel-Motelib, A., El Manawi, A.W.: Glass-ceramic materials from basaltic rocks and some industrial waste. J. Non-Cryst. Solids. 358, 1128–1134 (2012)CrossRefGoogle Scholar
  13. 13.
    Barbieri, L., Ferrari, A.M., Lancellotti, I., Leonelli, C.: Crystallization of (Na2O-MgO)-CaO-Al2O3-SiO2 glassy systems formulated from waste products. J. Am. Ceram. Soc. 10, 2515–2520 (2000)Google Scholar
  14. 14.
    Cheng, J.S., Tang, F.Y., Lou, X.C., Kang, J.F., Qian, S.Y.: Effect of MgO on crystallization and properties of glass-ceramics prepared from granite tailings. Journal of Wuhan University of Technology. 10, 11–14 (2014)Google Scholar
  15. 15.
    Cetin, S., Marangoni, M., Bernardo, E.: Lightweight glass-ceramic tiles from the sintering of mining tailings. Ceram. Int. 41, 5294–5300 (2015)CrossRefGoogle Scholar
  16. 16.
    Bernardo, E., Esposito, L., Rambaldi, E., Tucci, A., Hreglich, S.: Recycle of waste glass into glass-ceramic stoneware. J. Am. Ceram. Soc. 91, 2156–2162 (2008)CrossRefGoogle Scholar
  17. 17.
    Goel, A., Pascual, M.J., Ferreira, J.M.F.: Stable glass-ceramic sealants for solid oxide fuel cells: influence of Bi2O3 doping. Int. J. Hydrogen Energy. 35, 6911–6923 (2010)CrossRefGoogle Scholar
  18. 18.
    Serbena, F.C., Soares, V.O., Peitl, O., Pinto, H., Muccillo, R., Zanotto, E.D.: Internal residual stresses in sintered and commercial low expansion Li2O-Al2O3-SiO2 glass-ceramics. J. Am. Ceram. Soc. 94, 1206–1214 (2011)CrossRefGoogle Scholar
  19. 19.
    Dittmer, M., Ritzberger, C., Schweiger, M., Rheinberger, V., Wörle, M., Höland, W.: Phase and microstructure formation and their influence on the strength of two types of glass-ceramics. J. Non-Cryst. Solids. 384, 55–60 (2014)CrossRefGoogle Scholar
  20. 20.
    Liu, H.P., Huang, X.F., Ma, L.P., Chen, D.L., Shang, Z.B., Jiang, M.: Effects of Fe2O3 on the crystallization behaviour of glass-ceramics produced from naturally cooled yellow phosphorus furnace slag. Int. J. of Miner. Metall. Mater. 3, 316–323 (2017)CrossRefGoogle Scholar
  21. 21.
    Dai, C.L., Yang, Y., Yang, M.: Function and influence of magnesium on the architectural ceramic body, glaze and glass-ceramics. Foshan Ceramics. 9, 37–42 (2010)Google Scholar
  22. 22.
    Karamanov, A., Pelino, M.: Crystallization phenomena in iron-rich glasses. J. Non-Cryst. Solids. 282, 139–151 (2001)CrossRefGoogle Scholar
  23. 23.
    Păcurariu, C., Lazău, I.: Non-isothermal crystallization kinetics of some glass-ceramics with pyroxene structure. J. Non-Cryst. Solids. 358, 3332–3337 (2012)CrossRefGoogle Scholar
  24. 24.
    Becker, P., Libowitzky, E., Bohaty, L., Liebertz, J., Rhee, H., Eichler, H.-J., Kaminski, A.A.: Temperature-dependent thermo-mechanical and Raman spectroscopy study of the SRS-active melilite-type crystal Ca2ZnSi2O7 (hardystonite) at its incommensurate-commensurate phase transition. Phys. Status Solidi A. 2, 327–334 (2012)CrossRefGoogle Scholar
  25. 25.
    Pei, F.J., Guo, H.W., Li, P., Yan, B.J., Li, J., Yang, P., Zhu, G.H.: Influence of low magnesia content on the CaO-Al2O3-SiO2 glass-ceramics: its crystallization behaviour, microstructure and physical properties. Ceram. Int. 44, 20132–20139 (2018)CrossRefGoogle Scholar
  26. 26.
    Dai, C.L., Yang, Y., Yang, M.: Function and influence of Fe, Co. Ni on the glaze and glass-ceramics. Foshan Ceramics. 9, 43–46 (2011)Google Scholar
  27. 27.
    Tian, Y.L.: New Glass Technology. China Light Industry Press, Beijing (2013)Google Scholar
  28. 28.
    Bernardo, E.: Fast sinter-crystallization of a glass from waste materials. J. Non-Cryst. Solids. 354, 3486–3490 (2008)CrossRefGoogle Scholar
  29. 29.
    Bernardo, E., Scarinci, G.: Fast sinter-crystallization of waste glasses. Adv. Appl. Ceram. 107, 344–349 (2008)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Shagang Iron and SteelSoochow UniversitySuzhouChina
  3. 3.School of Metallurgical EngineeringAnhui University of TechnologyMa’anshanChina

Personalised recommendations