Sintering and mechanical properties of magnesium containing hydroxyfluorapatite

  • H. AmmarEmail author
  • S. Nasr
  • H. Ageorges
  • E. Ben Salem


Magnesium substituted hydroxyfluorapatites with the general formula Ca10-xMgx (PO4)6F(OH) with (0 ≤ x ≤ 2.5) were synthesized by the hydrothermal method. The apatite phases were sintered between 1050 and 1150 °C. The substitution of Ca2+ for Mg2+had a strong influence on the densification behavior and mechanical properties of the materials. The density increased simultaneously with the increase of Mg2+content up to x = 1 and then decreased beyond this value. The X-ray diffraction study indicated that the Mg introduced into the solutions was incorporated into the hydroxyfluorapatite. Mechanical properties: Vickers hardness Hv, Young’s modulus E, and shear modulus G were investigated in correlation with the modification of micro-structural characteristics of the sintered materials. According to the obtained properties, these materials possessed sufficient characteristics to be a promising candidate for bone replacement applications.


Hydroxyfluorapatite Magnesium Sintering Mechanical properties 







Magnesium doped hydroxyapatite


Magnesium doped hydroxyfluorapatite



  1. 1.
    Marra, K.G., Szem, J.W., Kumta, P.N., DiMilla, P.A., Weiss, L.E.: In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. Biomed. Mater. Res. 47, 324–335 (1999)CrossRefGoogle Scholar
  2. 2.
    Kolmas, J., Krukowski, S., Laskus, A., Jurkitewicz, M.: Synthetic hydroxyapatite in pharmaceutical applications. Ceram. Int. 42, 2472–2487 (2016)CrossRefGoogle Scholar
  3. 3.
    Szcześ, A., Hołysz, L., Chibowski, E.: Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interf. Sci. 249, 321–330 (2017)CrossRefGoogle Scholar
  4. 4.
    Pathi, S.P., Lin, D.D., Dorvee, J.R., Estroff, L.A., Fischbach, C.: Hydroxyapatite nanoparticle-containing scaffolds for the study of breast cancer bone metastasis. Biomater. 32, 5112–5122 (2011)CrossRefGoogle Scholar
  5. 5.
    Kim, S.S., Park, M.S., Jeon, O., Choi, C.Y., Kim, B.S.: Poly (lactide-coglycolide)/ hydroxyapatite composite scaffolds for bone tissue engineering. Biomater. 27, 1399–1409 (2006)CrossRefGoogle Scholar
  6. 6.
    Miyaji, F., Kono, Y., Suyama, Y.: Formation and structure of zinc-substituted calcium hydroxyapatite. Mater. Res. Bull. 40, 209–220 (2005)CrossRefGoogle Scholar
  7. 7.
    Ergun, C., Webster, T.J., Bizios, R., Doremus, R.H.: Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure. Biomed. Mater. Res. 59, 305–311 (2001)CrossRefGoogle Scholar
  8. 8.
    Roy, M., Fielding, G.A., Bandyopadhyay, A., Bose, S.: Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption. Biomater. Sci. 1, 74–82 (2013)CrossRefGoogle Scholar
  9. 9.
    Sundfeldt, M., Widmark, M., Wenerberg, A., Karrholm, J., Johansson, C.B., Carlsson, L.V.: Does sodium fluoride in bone cement affect implant fixation? Part I: Bone tissue response, implant fixation and histology in nine rabbits. Mater. Sci: Mater. Med. 13, 1037–1043 (2002)Google Scholar
  10. 10.
    Qu, H., Wei, M.: The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior. Acta Biomater. 2, 113–119 (2006)CrossRefGoogle Scholar
  11. 11.
    Wang, Y., Zhang, S., Zeng, X., Cheng, K., Qian, M., Weng, W.: In vitro behavior of fluoridated hydroxyapatite coatings in organic-containing simulated body fluid. Mater. Sci. Eng. C. 27, 244–250 (2007)CrossRefGoogle Scholar
  12. 12.
    Bhadang, K.A., Holding, C.A., Thissen, H., Mc-Lean, K.M., Forsythe, J.S., Haynes, D.R.: Biological responses of human osteoblasts and osteoclasts to flame-sprayed coatings of hydroxyapatite and fluorapatite blends. Acta Biomater. 6, 1575–1583 (2010)CrossRefGoogle Scholar
  13. 13.
    Yoon, B.H., Kim, H.W., Lee, S.H., Bae, C.J., Koh, Y.H., Kong, Y.M.: Stability and cellular responses to fluorapatite–collagen composites. Biomater. 26, 2957–2963 (2005)CrossRefGoogle Scholar
  14. 14.
    Zhang, W.G., Wang, L.Z., Liu, Z.: The influence of fluoride on the development of the osteoblast phenotype in rat calvarial osteoblasts: an in vitro study. Shan. K. Qi.Y. X. 7, 88–93 (1998)Google Scholar
  15. 15.
    Kim, H.W., Lee, E.J., Kim, H.E., Salih, V., Knowles, J.C.: Effect of fluoridation of hydroxyapatite in hydroxyapatite–polycaprolactone composites on osteoblast activity. Biomater. 26, 4395–4404 (2005)CrossRefGoogle Scholar
  16. 16.
    Inoue, M., Nagatsuka, H., Tsujigiwa, H., Inoue, M., LeGeros, R.Z., Yamamoto, T.: In vivo effect of fluoride-substituted apatite on rat bone. Dent. Mater. 24, 398–402 (2005)CrossRefGoogle Scholar
  17. 17.
    Agathopoulos, S., Tulyaganov, D.U., Marques, P.A.A.P., Ferro, M.C., Fernandes, M.H.V., Correia, R.N.: The fluorapatite–anorthite system in biomedicine. Biomater. 24, 1317–1331 (2003)CrossRefGoogle Scholar
  18. 18.
    Tredwin, C.J., Young, A.M., Abou Neel, E.A., Georgiou, G., Knowles, J.C.: Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method: dissolution behaviour and biological properties after crystallization. Mater. Sci.: Mater. Med. 25, 47–53 (2014)Google Scholar
  19. 19.
    LeGeros, R.Z.: Calcium phosphates in oral biology and medicine. New York University College of Dentistry, New York (1991)Google Scholar
  20. 20.
    Abdallaha, M.N., Eimar, H., Bassett, D.C., Schnabel, M., Ciobanu, O., Nelea, V., McKee, M.D., Cerruti, M., Tamimi, F.: Diagenesis-inspired reaction of magnesium ions with surface enamel mineral modifies properties of human teeth. Acta Biomater. 37, 174–183 (2016)CrossRefGoogle Scholar
  21. 21.
    Saris, N.E., Mervaala, E., Karppanen, H., Khawaja, J.A., Lewenstam, A.: Magnesium. An update on physiological, clinical and analytical aspects. Clin. Chim. Acta. 294, 1–26 (2000)CrossRefGoogle Scholar
  22. 22.
    Kraus, T., Fischerauer, S.F., Hänzi, A.C., Uggowitzer, P.J., Löffler, J.F., Weinberg, A.M.: Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater. 8, 1230–1238 (2012)CrossRefGoogle Scholar
  23. 23.
    Staiger, M.P., Pietak, A.M., Huadmai, J., Dias, G.: Magnesium and its alloys as orthopedic biomaterials: a review. Biomater. 27, 1728–1734 (2006)CrossRefGoogle Scholar
  24. 24.
    Hidouri, M., Bouzouita, K., Kooli, F., Khattech, I.: Thermal behaviour of magnesium-containing fluorapatite. Mater. Chem. Phys. 80, 496–505 (2003)CrossRefGoogle Scholar
  25. 25.
    Grigolato, R., Pizzi, N., Brotto, M.C., Corrocher, G., Desando, G., Grigolo, B.: Magnesium-enriched hydroxyapatite as bone filler in an ameloblastoma mandibular defect. Int. Clin. Exp. Med. 8, 281–288 (2015)Google Scholar
  26. 26.
    Landi, E., Logroscino, G.E., Proietti, L., Tampieri, A., Sandri, M., Sprio, S.: Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behavior. Mater. Sci: Mater. Med. 19, 239–247 (2008)Google Scholar
  27. 27.
    Ben Abdelkader, S., Khattech, I., Rey, C., Jemal, M.: Synthese, caracterisation et thermochimie d’apatites calco-magnesiennes hydroxylées et fluorées. Therm. Acta. 376, 25–36 (2001)CrossRefGoogle Scholar
  28. 28.
    Suchanek, W.L., Byrappa, K., Shuk, P., Riman, R.E., Janas, V.F., TenHuisen, K.S.: Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method. Biomater. 25, 4647–4657 (2004)CrossRefGoogle Scholar
  29. 29.
    Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 32, 751–767 (1976)CrossRefGoogle Scholar
  30. 30.
    Gayathri, B., Muthukumarasamy, N., Velauthapillai, D., Santhosh, S.B., Asokan, V.: Magnesium incorporated hydroxyapatite nanoparticles: preparation, characterization, antibacterial and larvicidal activity. Arab. Chem. 11, 645–654 (2018)CrossRefGoogle Scholar
  31. 31.
    Big, A., Faliai, G., Foresti, E., Gazzano, M., Ripamon, A., Roveri, N.: Magnesium influence on hydroxyapatite crystallization. Inor. Biochem. 49, 69–78 (1993)CrossRefGoogle Scholar
  32. 32.
    Bertoni, E., Bigi, A., Cojazzi, G., Gandol, M., Panzavolta, S., Roveri, N.: Nanocrystals of magnesium and fluoride substituted hydroxyapatite. Inorg. Biochem. 72, 29–35 (1998)CrossRefGoogle Scholar
  33. 33.
    Mayer, I., Scblam, R., Featberstone, J.D.B.: Magnesium-containing carbonate apatites. Inorg. Biochem. 66, 1–6 (1997)CrossRefGoogle Scholar
  34. 34.
    Fowler, B.O.: Infrared Studies of Apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg. Chem. 13, 194–207 (1974)CrossRefGoogle Scholar
  35. 35.
    Harrison, J., Melville, A.J., Forsythe, J.S., Muddle, B.C., Trounson, A.O., Gross, K.A., Mollard, R.: Sintered hydroxyfluorapatites—IV: the effect of fluoride substitutions upon colonisation of hydroxyapatites by mouse embryonic stem cells. Biomater. 25, 4977–4986 (2004)CrossRefGoogle Scholar
  36. 36.
    Rodriguez-Lorenzo, L.M., Hart, J.N., Gross, K.A.: Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. Biomater. 24, 3777–13785 (2003)CrossRefGoogle Scholar
  37. 37.
    Jha, L.J., Best, S.M., Knowles, J.C., Rehman, I., Santos, J.D., Bonfield, W.: Preparation and characteri zation of fluoride-substituted apatites. Mater. Sci: Mater. Med. 8, 185–191 (1997)Google Scholar
  38. 38.
    Rodriguez-Lorenzo, L.M., Hart, J.N., Gross, K.A.: Structural and chemical analysis of well-crystallized hydroxyfluorapatites. Phys. Chem. B. 107, 8316–8320 (2003)CrossRefGoogle Scholar
  39. 39.
    Fathi, M.H., Zahrani, E.M.: Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite. Cryst. Gro. 311, 1392–1403 (2009)CrossRefGoogle Scholar
  40. 40.
    Nasr, S., Ben Salem, E., Bouzouita, K.: Effect of fluorine on the thermal stability of the magnesium-substituted hydroxyapatite. Ann. Chim. Sci. Mater. 36, 159–176 (2011)CrossRefGoogle Scholar
  41. 41.
    Iqbal, K.N., Ijaz, K., Zahid, M., Khan, A.S., Abdul Kadir, M.R., Hussain, R., A.-ur-Rehman, Jawwad, A.D., I-ur-Rehman, Chaudhry Aqif, A.: Microwave assisted synthesis and characterization of magnesium substituted calcium phosphate bioceramics. Mater. Sci. Eng. C. 56, 286–293 (2015)CrossRefGoogle Scholar
  42. 42.
    Fadeev, I.V., Shvorneva, L.I., Barinov, S.M., Orlovskii, V.P.: Synthesis and structure of magnesium-substituted hydroxyapatite. Inorg. Mater. 39, 947–950 (2003)CrossRefGoogle Scholar
  43. 43.
    Baravelli, S., Bigi, A., Ripamonti, A., Roveri, N.: Thermal behavior of bone and synthetic hydroxyapatites submitted to magnesium interaction in aqueous medium. Inorg. Biochem. 20, 1–12 (1984)CrossRefGoogle Scholar
  44. 44.
    Qi, G., Zhang, S., Khor, K.A., Liu, C., Zeng, X., Weng, W., Qian, M.: In vitro effect of magnesium inclusion in sol–gel derived, apatite. Thin Solid Films. 516, 5176–5180 (2008)CrossRefGoogle Scholar
  45. 45.
    Rice, R.W.: Microstructure dependence of mechanical behavior of ceramics. Treat. on Mater. Sci. Tech. 11, 199–381 (1977)CrossRefGoogle Scholar
  46. 46.
    Furukawat, M., Horita, Z., Nemoto, M., Valiev, R.Z., Langdon, T.G.: Microhardness measurements and the Hall-Petch relationship in an al mg alloy with submicrometer grain size. Acta Mater. 44, 4619–4629 (1996)CrossRefGoogle Scholar
  47. 47.
    Thanigai Arul, K., Kolanthai, E., Manikandan, E., Bhalerao, G.M.: Green synthesis of magnesium ion incorporated nanocrystalline hydroxyapatite and their mechanical, dielectric and photoluminescence properties. Mater. Res. Bull. 67, 55–62 (2015)CrossRefGoogle Scholar
  48. 48.
    Vaßen, R., Stover, D.: Processing and properties of nanophase non-oxide ceramics. Mater. Sci. Eng. 301, 59–68 (2001)CrossRefGoogle Scholar
  49. 49.
    Adzila, S., Ramesh, S., Sopyan, I.: Properties of magnesium doped nanocrystalline hydroxyapatite synthesize by mechanochemical method. ARPN. Eng. App. Sci. 11, 14097–14100 (2016)Google Scholar
  50. 50.
    Ramesh, S., Jeffrey, C.K.L., Tan, C.Y., Wong, Y.H., Ganesan, P., Kutty, M.G., Chandran, H., Devaraj, P.: Sintering behavior and properties of magnesium orthosilicate-hydroxyapatite ceramic. Ceram. Int. 42, 15756–15761 (2016)CrossRefGoogle Scholar
  51. 51.
    Yetmez, M., Erkmen, Z.E., Kalkandelen, C., Ficai, A., Oktar, F.N.: Sintering effects of mullite-doping on mechanical properties of bovine hydroxyapatite. Mater. Sci. Eng. C. 77, 470–475 (2017)CrossRefGoogle Scholar
  52. 52.
    Bouslama, N., Chevalier, Y., Bouaziz, J., Ben Ayed, F.: Influence of the sintering temperature on Young’s modulus and the shear modulus of tricalcium phosphate fluorapatite composites evaluated by ultrasound techniques. Mater. Chem. Phys. 141, 289–297 (2013)CrossRefGoogle Scholar
  53. 53.
    Franz, E.D., Telle, R.: Reaction hot pressing of fluorapatite for dental implants. Hight. Tech.Ceram. 1, 31–41 (1987)Google Scholar
  54. 54.
    Elliot, J.C.: Structure and Chemistry of the apatite and other calcium orthophosphates. Amesterdam. (1994)Google Scholar
  55. 55.
    Akao, M., Aoki, H., Kato, K.: Mechanical properties of sintered hydroxyapatite for prosthetic applications. Mater. Sci. 16, 809–812 (1981)CrossRefGoogle Scholar
  56. 56.
    Vashishth, D., Tanner, K.E., Bonfield, W.: Fatigue of cortical bone under combined axial-torsional loading. Ortho. Res. 13, 414–420 (2001)CrossRefGoogle Scholar
  57. 57.
    Ohman, C., Zwierzak, I., Baleani, M., Viceconti, M.: Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject. Eng. Med. 227, 200–206 (2012)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.I.P.E.I. of Monastir, Unit of Materials and Organic SynthesisUniversity of Monastir, UR17ES31MonastirTunisia
  2. 2.University of Limoges, Institute of Research for Ceramics (IRCER)CNRS-UMR7315 European Ceramics CentreLimogesFrance

Personalised recommendations