Preparation of CaO-MgO-ZrO2 refractory and its desulfurization effect on Ni-based alloy in vacuum induction melting (VIM)

  • Tao Zhang
  • Yaowu WeiEmail author
  • Junfeng Chen
  • Nan Li
  • Bingqiang Han


The effect of micromonoclinic ZrO2 addition on properties of CaO-based refractories was investigated in our work. Zero, 5 wt%, 10 wt%, and 15 wt% micromonoclinic ZrO2 powders were added into CaO-MgO (CaO-based) refractories. The obtained results indicated that with the introduction of micromonoclinic ZrO2, the density increased slightly after heated at 1600 °C for 3 h. The results indicated that the density and mechanical properties of the samples were improved after introducing micromonoclinic ZrO2. The hydration resistance of the samples was improved with appropriate proportion of ZrO2. However, excessive ZrO2 damaged the hydration resistance of the samples. The influence of monoclinic ZrO2 on the samples was mainly caused by CaZrO3, the reaction product of CaO and ZrO2. The details of the CaZrO3 effects on the samples were discussed in this paper. Besides, based on the experiment results, CaO-based crucible was prepared and used in desulfurization. The desulfurization effects were compared with desulfurizer: Al. Desulfurizer reduced the content of [O] and [S] in the alloy obviously.


CaO granules Monoclinic ZrO2 Hydration resistance Thermal shock resistance Desulfurization 



  1. 1.
    Thellaputta, G.R., Chandra, P.S., Raoc, C.S.P.: Machinability of nickel based superalloys: a review. Mater. Today Proc. 4(2), 3712–3721 (2017)CrossRefGoogle Scholar
  2. 2.
    Praveen, K.V.U., Sastry, G.V.S., Singh, V.: Work-hardening behavior of the Ni-Fe based superalloy IN718. Metall. Mater. Trans. A. 39(1), 65–78 (2008)CrossRefGoogle Scholar
  3. 3.
    Maktouf, W., Ammar, K., Naceur, I.B., et al.: Multiaxial high-cycle fatigue criteria and life prediction: application to gas turbine blade. Int. J. Fatigue. 92, 25–35 (2016)CrossRefGoogle Scholar
  4. 4.
    Kwong, J.: Minor cutting edge–workpiece interactions in drilling of an advanced nickel-based superalloy. Int. J. Mach. Tools Manuf. 49(7), 645–658 (2009)CrossRefGoogle Scholar
  5. 5.
    Grosu, Y., Bondarchuk, O., Faik, A.: The effect of humidity, impurities and initial state on the corrosion of carbon and stainless steels in molten HitecXL salt for CSP application. Sol. Energy Mater. Sol. Cells. 174, 34–41 (2018)CrossRefGoogle Scholar
  6. 6.
    Gu, K., Dogan, N., Coley, K.S.: The effect of sulfur concentration in the metal on the mass transfer of phosphorus in bloated metal droplets. Steel Research International (2018)Google Scholar
  7. 7.
    Jacobi. The Process Metallurgy and Material Engineering of Steel with High Purity and Cleanness. 37th International Refractories Colloquium. 1994, Aachen. Germany.Google Scholar
  8. 8.
    Chen B, Ma Y, Gao M, et al. Changes of oxygen content in molten TiAl alloys as a function of superheat during vacuum induction melting[J]. J. Mater. Sci. Technol., 2010, 26(10):0-903.CrossRefGoogle Scholar
  9. 9.
    Lin, W., Nomura, O., Nakamura, R., Uchida, S., Morio, E.: Decarbonization behavior of graphite-containing refractories by molten steel. Taikabutsu Orerseas. 19(4), 15–24 (1999)Google Scholar
  10. 10.
    Soltanieh, M., Payandeh, Y.: The relationship between oxygen chemical potential and steel cleanliness. J. Iron Steel Res. Int. 12(5), 28 (2005)Google Scholar
  11. 11.
    Kijac, J., Kovac, P., Steranka, E., Masek, V., Marek, P.: Metalurgija. 43, 59–62 (2004)Google Scholar
  12. 12.
    Jianping, N., Yang, K., Xiaofeng, S., Tao, J., Hengrong, G., Hu, Z.: Denitrogenation and desulphurization in vim for ni-based superalloy refining. Rare Metal Mater. Eng. 32(1), 63–66 (2003)Google Scholar
  13. 13.
    Niu, J.-P., Sun, X.-F., Jin, T., Yang, K.-N., Guan, H.-R., Hu, Z.-Q.: Study on deoxidations during VIM refining Ni-base superalloy by using CaO crucible. J. Mater. Eng. 12(10), 36–38 (2002)Google Scholar
  14. 14.
    Junfeng, C., Liugang, C., Yaowu, W., Nan, L., Shaowei, Z.: Corrosion and penetration behaviors of slag/steel on the corroded interfaces of Al2O3-C refractories: role of Ti3AlC2. Corros. Sci. 143, 166–176 (2018) (SCI)CrossRefGoogle Scholar
  15. 15.
    Yeprem, H.A., Türedi, E., Karagöz, S.: A quantitative-metallographic study of the sintering behaviour of dolomite. Mater. Charact. 52(4), 331–340 (2004)CrossRefGoogle Scholar
  16. 16.
    Mingxue, J., Zhaoyou, C.: Penetration of Al2O3 and CaF2 containing secondary refining slags into magnesia-dolomite refractories. Ironmak. Steelmak. 7(28), 21–25 (1993)Google Scholar
  17. 17.
    H Nnkagawa. Development of MgO-CaO-Al2O3 castable for steel ladle slag line. Proc. UNITECR :203 (1997).Google Scholar
  18. 18.
    Xinming, R., Ma, B., et al.: Slag corrosion characteristics of MgO-based refractories under vacuum electromagnetic field. J. Aust. Ceram. Soc. 1–8.
  19. 19.
    Maya, K., Matsuo, T.: Removal of chronium from molten steel by oxidation refining. Tetsu-to-Hagane. 77(3), 369–376 (2009)CrossRefGoogle Scholar
  20. 20.
    Kobayashi, Y., Kodama, S.: Effect of CaO on Dephosphorising Ability of Deoxidation Slag for Effective Utilisation of Phosphorus in Steel. Trans. Iron Steel. Inst. Jpn. 52(6), 960–966 (2012)CrossRefGoogle Scholar
  21. 21.
    Zhang, Q., Yaowu, W., Zhang, T., et al.: Preparation of CaO granules using the granulation method. Adv. Appl. Ceram. 6, 1–6 (2018)Google Scholar
  22. 22.
    Yaowu, W., Tao, Z., Qi, Z., Bingqiang, H., Nan, L.: Improvement in hydration resistance of CaO granules by addition of Zr(OH)4 and Al(OH)3. J. Am. Ceram. Soc. 00, 1–11 (2018). CrossRefGoogle Scholar
  23. 23.
    Junfeng, C., Nan, L., Yaowu, W., et al.: Influence of carbon sources on nitriding process, microstructures and mechanical properties of Si3N4, bonded SiC refractories. J. Eur. Ceram. Soc. 37(4), 1821–1829 (2017)CrossRefGoogle Scholar
  24. 24.
    Ghasemi-Kahrizsangi, S., Barati Sedeh, M., Gheisari Dehsheikh, H., et al.: Densification and properties of ZrO2 nanoparticles added magnesia–doloma refractories. Ceram. Int. S0272884216310744 (2016)Google Scholar
  25. 25.
    Dehsheikh, H.G., Karamian, E., Owsalou, R.G., et al.: Improvement in performance of MgO–CaO refractory composites by addition of Iron (III) oxide nanoparticles. Ceram. Int. S0272884218314329 (2018)Google Scholar
  26. 26.
    Guanyao, C., Baotong, L., Zhang, H., et al.: On the modification of hydration resistance of CaO with ZrO2 additive. Int. J. Appl. Ceram. Technol. 13(6), 1173–1181 (2016)CrossRefGoogle Scholar
  27. 27.
    Meng Fanlong, Cheng Zhiwei, Chen Guangyao, et al. Hydration resistance of Y2O3 doped CaO and its application to melting titanium alloys. Charact. Miner. Metals Mater. (2016)Google Scholar
  28. 28.
    Yong, D., Jin, Z.: Z, Huang Peiyun. Thermodynamic calculation of the zirconia–calcia system. J. Am. Ceram. Soc. 75(11), 3040–3048 (2010)Google Scholar
  29. 29.
    Schafföner, S., Aneziris, C.G., Berek, H., et al.: Fused calcium zirconate for refractory applications. J. Eur. Ceram. Soc. 33(15-16), 3411–3418 (2013)CrossRefGoogle Scholar
  30. 30.
    Kim, S.K., Kim, T.K., Kim, M.G., et al.: Investment casting of titanium alloy with CaO crucible and CaZrO3 mold. Lightweight Alloys for Aerospace Application, pp. 251–260. Wiley, Hoboken (2013)Google Scholar
  31. 31.
    Ewais, E.M.M., Bayoumi, I.M.I.: Fabrication of MgO-CaZrO3, refractory composites from Egyptian dolomite as a clinker to rotary cement kiln lining. Ceram. Int. 44, 9236–9246 (2018)CrossRefGoogle Scholar
  32. 32.
    Rodaev Vyacheslav, V., Zhigachev Andrey, O., Golovin, Y.I.: Microstructure and phase composition of CaO doped zirconia nanofibers. Ceram. Int. 43(1), 1200–1204 (2017)CrossRefGoogle Scholar
  33. 33.
    Chen, M., Lu, C., Jingkun, Y.: Improvement in performance of MgO-CaO refractories by addition of nano-sized ZrO2. J. Eur. Ceram. Soc. 27, 4633–4638 (2007)CrossRefGoogle Scholar
  34. 34.
    Shahraki, A., Ghasemi-kahrizsangi, S., Nemati, A.: Performance improvement of MgO-CaO refractories by the addition of nano-sized Al2O3 [J]. Mater. Chem. Phys. 198, 354–359 (2017)CrossRefGoogle Scholar
  35. 35.
    Li, Z., Zhang, S., Lee, W.E.: Improving the hydration resistance of lime-based refractory materials. Metall. Rev. 53(1), 1–20 (2013)CrossRefGoogle Scholar
  36. 36.
    Hu, B., Xu, Y., Hongda, Z.: Special refractories operative technology directory. Metallurgical Industrial Press, Beijing (2004)Google Scholar
  37. 37.
    Rodríguez, J.L., Rodríguez, M.A., et al.: Reaction sintering of zircon-dolomite mixtures. J. Eur. Ceram. Soc. 21, 343–354 (2001)CrossRefGoogle Scholar
  38. 38.
    Richardson, D.W.: Modern ceramic engineering. Marcel Dekker, Properties Processing and Use in Design (1992)Google Scholar
  39. 39.
    Junfeng, C., Nan, L., Hubálková, J., Aneziris, C.G.: Elucidating the role of Ti3AlC2 in low carbon MgO-C refractories: antioxidant or alternative carbon source? J. Eur. Ceram. Soc. 38, 3387–3394 (2018)CrossRefGoogle Scholar
  40. 40.
    Jianping, N., Yang, K., Xiaofeng, S., Tao, J., Hengrong, G., Hu, Z.: Denitrogenation and desulphurization in VIM for Ni-base superalloy refining. Rare Metal Mater. Eng. 32(1), 63–66 (2003)Google Scholar
  41. 41.
    Guo, W., Yu, S., He, Y., Shen, F.: Study on the desulfurization of hot metal with composite reagent of calcium oxide and aluminum [J]. J. North. Univ. (Nature Science). 33(12), 1737–1740 (2012)Google Scholar
  42. 42.
    Liang, L.-k., Yin-chang, C., Yang, H., et al.: Metallurgy thermodynamics and kinetics [M]. Shenyang: North. Univ. Technol. Press. 201, 208–211 (1990)Google Scholar
  43. 43.
    Gao, F.: Smelting metallic magnesium experimental study of vacuum metal thermal reduction technology with magnesite as raw material [D]. Northeastern University, Shen Yang (2010)Google Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • Tao Zhang
    • 1
  • Yaowu Wei
    • 1
    Email author
  • Junfeng Chen
    • 1
  • Nan Li
    • 1
  • Bingqiang Han
    • 1
  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina

Personalised recommendations