Advertisement

Optical and mechanical behavior of glass treated by ion exchange

  • L. YounesEmail author
  • M. Hamidouche
  • K. Ayadi
Research
  • 33 Downloads

Abstract

In this work, the effect of glass ionic exchange parameters was studied. The results have shown that the optical transmission decreases as processing time increases. An increase in hardness was also found due to the occupation of the free spaces in the glass network by the exchanged potassium, which locally induces the increase of the density. The toughness of the glass was optimal when the thermochemical treatment is carried out at medium times, by compressing the surface layers. At lower times, the potassium concentration exchanged is less whereas the extended times lead to stress relaxation of induced compression. By performing a chemical etching and using the indentation technique, we followed the properties in depth. Their evolution, below the surface, is a function of diffused potassium concentration. Raman spectroscopy was used to study the variation of the microstructure of the treated glass during different immersion times. The photoelastic measurement of Vickers indentation imprints highlights the evolution of the residual stresses.

Keywords

Glass, Ion exchange Residual stress Photoelasticimetry 

Notes

References

  1. 1.
    Nordberg, M.E., Mochel, E.L., Garfinkel, H.M., Olcott, J.S.: Strengthening by ion exchange. J. Am. Ceram. Soc. 47(5), 215–219 (1964)CrossRefGoogle Scholar
  2. 2.
    Donald, I.W.: Methods for improving the mechanical properties of oxide glasses. A review. J. Mater. Sci. 24, 4177–4208 (1989)CrossRefGoogle Scholar
  3. 3.
    Leboeuf, V., Blondeau, J.P., De Sousa Meneses, D., Véron, O.: Potassium ionic exchange in glasses for mechanical property improvement. J. Non-Cryst. Solids. 377, 60–65 (2013)CrossRefGoogle Scholar
  4. 4.
    Datsiou, K.C., Hall, D., Overend, M.: Repair of soda-lime glass. Glass Struct. Eng. (2018)Google Scholar
  5. 5.
    Talimian, A., Mariotto, G., Sglavo, V.M.: Electric field-assisted ion exchange strengthening of borosilicate and soda lime silicate glass. Int. J. Appl. Glas. Sci. 1–10 (2017)Google Scholar
  6. 6.
    Karlsson, S., Ali, S., Limbach, R., Strand, M., Wondraczek, L.: Alkali salt vapour deposition and in-line ion exchange on flat glass surfaces. Glass Technol. Eur. J. Glass Sci. Technol. A. 56(6), 203–213 (2015)CrossRefGoogle Scholar
  7. 7.
    Koike, A., Akiba, S., Sakagami, T., Hayashi, K., Ito, S.: Difference of cracking behavior due to Vickers indentation between physically and chemically tempered glasses. J. Non-Cryst. Solids. 358, 3438–3444 (2012)CrossRefGoogle Scholar
  8. 8.
    Karlsson, S., Jonson, B., Stalhandske, C.: The technology of chemical glass strengthening - a review. Glass Technol. Eur. J. Glass Sci. Technol. A. 51(2), 41–54 (2010)Google Scholar
  9. 9.
    Varshneya, A.K.: The physics of chemical strengthening of glass: room for a new view. J. Non-Cryst. Solids. 356, 2289–2294 (2010)CrossRefGoogle Scholar
  10. 10.
    Li, X., Jiang, L., Wang, Y., Mohagheghian, I., Dear, J.P., Li, L., Yan, Y.: Correlation between K+-Na+ diffusion coefficient and flexural strength of chemically tempered aluminosilicate glass. J. Non-Cryst. Solids. 1–10 (2017)Google Scholar
  11. 11.
    Mazzoldi, P., Caraturan, S., Quaranta, A., Sada, C., Sglavo, V.M.: Ion exchange process : history, evolution and applications. Riv. Nuovo Cimento. 36(9), 397–460 (2013)Google Scholar
  12. 12.
    Donald, I.W., Hill, M.J.C.: Preparation and mechanical behavior of some chemically strengthened lithium magnesium alumino-silicate glasses. J. Mater. Sci. 23, 2797–2809 (1988)CrossRefGoogle Scholar
  13. 13.
    Jiang, L., Guo, X., Li, X., Li, L., Zhang, G., Yan, Y.: Different K+- Na+ inter diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass. Appl. Surf. Sci. 265, 889–894 (2013)CrossRefGoogle Scholar
  14. 14.
    Sglavo, V.M., Quaranta, A., Allodi, V., Mariotto, G.: Analysis of the surface structure of soda lime silicate glass after chemical strengthening in different KNO3 salt baths. J. Non-Cryst. Solids. 401, 105–109 (2014)CrossRefGoogle Scholar
  15. 15.
    Jiang, L., Wang, Y., Mohagheghian, I., Li, X., Guo, X., Li, L., Dear, J.P., Yan, Y.: Effect of residual stress on the fracture of chemically strengthened thin aluminosilicate glass. J. Mater. Sci. (2016).  https://doi.org/10.1007/s10853-016-0434-2 CrossRefGoogle Scholar
  16. 16.
    Varshneya, A.K.: Chemical strengthening of glass: lessons learned and yet to be learned. Int. J. Appl. Glas. Sci. 1(2), 131–142 (2010)CrossRefGoogle Scholar
  17. 17.
    Jannotti, P., Subhash, G., Ifju, P., Kreski, P.K., Varshneya, A.K.: Photoelastic measurement of high stress profiles in ion-exchanged glass. Int. J. Appl. Glas. Sci. 2(4), 275–281 (2011)CrossRefGoogle Scholar
  18. 18.
    Gy, R.: Ion exchange for glass strengthening - a review. Mater. Sci. Eng. B. 149, 159–165 (2008)CrossRefGoogle Scholar
  19. 19.
    Li, X., Jiang, L., Zhang, X., Yan, Y.: Influence of residual compressive stress on nanoindentation response of ion-exchanged aluminosilicate float glass on air and tin sides. J. Non-Cryst. Solids. 385, 1–8 (2014)CrossRefGoogle Scholar
  20. 20.
    Sglavo, V.M., Talimian, A., Ocsko, N.: Influence of salt bath calcium contamination on soda lime silicate glass chemical strengthening. J. Non-Cryst. Solids. 458, 121–128 (2017)CrossRefGoogle Scholar
  21. 21.
    Saggioro, B.Z., Ziemath, E.C.: Changes of physical properties of glass surfaces exposed to KNO3 vapors. J. Non-Cryst. Solids. 352, 2783–2790 (2006)CrossRefGoogle Scholar
  22. 22.
    Talimian A, V.M., Sglavo.: Electric field-assisted ion exchange of borosilicate glass tubes. Chapter 5, Licensee InTech, 139–152 (2015).  https://doi.org/10.5772/60805 Google Scholar
  23. 23.
    Oven, R., Batchelor, S., Ashworth, D.G.: Effects of annealing electric field assisted K+- Na+ ion exchanged soda-lime glass guides. J. Phys. D: Appl. Phys. 32, 650–655 (1999)CrossRefGoogle Scholar
  24. 24.
    Gonella, F., Cattaruzza, E., Quaranta, A., Ali, S., Argiolas, N., Sada, C.: Diffusion behavior of transition metals in field-assisted ion-exchange glasses. Solid State Ionics. 177, 3151–3155 (2006)CrossRefGoogle Scholar
  25. 25.
    Tyagi, V., Varshneya, A.K.: Measurement of progressive stress buildup during ion exchange in alkali aluminosilicate glass. J. Non-Cryst. Solids. 238, 186–192 (1998)CrossRefGoogle Scholar
  26. 26.
    Quaranta, A., Cattaruzza, E., Gonella, F.: Modelling the ion exchange process in glass : phenomenological approaches and perspectives. Mater. Sci. Eng. B. 149, 133–139 (2008)CrossRefGoogle Scholar
  27. 27.
    Ajovalasit, A., Petrucci, G., Scafidi, M.: Photoelastic analysis of edge residual stresses in glass by automated ‘test fringes’ methods. Exp. Mech. 52, 1057–1066 (2012)CrossRefGoogle Scholar
  28. 28.
    Youmei, J., Linge, J.: Effect of additives in the salt bath on glass strengthening. J. Non-Cryst. Solids. 80, 300–306 (1986)CrossRefGoogle Scholar
  29. 29.
    Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness : I, direct crack measurements. J. Am. Ceram. Soc. 64(9), 533–538 (1981)CrossRefGoogle Scholar
  30. 30.
    Marshall, D.B., Lawn, B.R.: An indentation technique for measuring stresses in tempered glass surfaces. J. Am. Ceram. Soc. 60(1-2), 86–87 (1977)CrossRefGoogle Scholar
  31. 31.
    Erdem, I., Guldiren, D., Aydin, S.: Chemical tempering of soda lime silicate glasses by ion exchange process for the improvement of surface and bulk mechanical strength. J. Non-Cryst. Solids. 473, 170–178 (2017)CrossRefGoogle Scholar
  32. 32.
    Albert, J., Yip, G.L.: Stress-induced index change for K+- Na+ ion exchange in glass. Electron. Lett. 23(14), 737–738 (1987)CrossRefGoogle Scholar
  33. 33.
    Garza-Méndez, F.J., Hinojosa-Rivera, M., Gomez, I., Sanchez, E.M.: Scaling properties of fracture surfaces on glass strengthened by ionic exchange. Appl. Surf. Sci. 254, 1471–1474 (2007)CrossRefGoogle Scholar
  34. 34.
    Guldiren, D., Erdem, I., Aydin, S.: Influence of silver and potassium ion exchange on physical and mechanical properties of soda lime glass. J. Non-Cryst. Solids. 441, 1–9 (2016)CrossRefGoogle Scholar
  35. 35.
    Jannotti, P., Subhash, G., Ifju, P., Kreski, P.K., Varshneya, A.K.: Influence of ultra-high residual compressive stress on the static and dynamic indentation response of a chemically strengthened glass. J. Eur. Ceram. Soc. 32, 1551–1559 (2012)CrossRefGoogle Scholar
  36. 36.
    Cesar, P.F., Gonzaga, C.C., Miranda Jr., W.G., Yoshimura, H.N.: Effect of ion exchange on hardness and fracture toughness of dental porcelains. J Biomed Mater Res B Appl Biomater. 83B, 538–545 (2007)CrossRefGoogle Scholar
  37. 37.
    Houérou, V.L., Sangleboeuf, J.-C., Dériano, S., Rouxel, T., Duisit, G.: Surface damage of soda-lime-silica glasses : indentation scratch behavior. J. Non-Cryst. Solids. 316, 54–63 (2003)CrossRefGoogle Scholar
  38. 38.
    Kese, K.O., Li, Z.C., Bergman, B.: Influence of residual stress on elastic modulus and hardness of soda-lime glass measured by nanoindentation. J. Mater. Res. 19(10), 3109–3119 (2004)CrossRefGoogle Scholar
  39. 39.
    Toth, Z., Nagy, A., Steinbach, G., Juhasz, A.: Investigation of indentation-caused cracking in surface-modified silica glasses. J. Mater. Sci. Eng. A. 387-389, 542–545 (2004)CrossRefGoogle Scholar
  40. 40.
    Shen, J., Green, D.J.: Prediction of stress profiles in ion-exchanged glasses. J. Non-Cryst. Solids. 344, 79–87 (2004)CrossRefGoogle Scholar
  41. 41.
    Ziemath, E.C., Saggioro, B.Z., Fossa, J.S.: Physical properties of silicate glasses doped with SnO2. J. Non-Cryst. Solids. 351, 3870–3878 (2005)CrossRefGoogle Scholar
  42. 42.
    Seghi, R.R., Denry, I., Brajevic, F.: Effects of ion exchange on hardness and fracture toughness of dental ceramics. Int. J. Prosthodont. 5(4), 309–314 (1992)Google Scholar
  43. 43.
    Green, D.J., Tandon, R., Sgalvo, V.M.: Crack arrest and multiple cracking in glass through the use of designed residual stress profiles. Science. 283, 1295–1397 (1999)CrossRefGoogle Scholar
  44. 44.
    Shen, J., Green, J., Tressler, R.E., Shelleman, D.L.: Stress relaxation of a soda lime silicate glass below the glass transition temperature. J. Non-Cryst. Solids. 324, 277–288 (2003)CrossRefGoogle Scholar
  45. 45.
    Morris, D.J., Myers, S.B., Cook, R.F.: Indentation crack initiation in ion-exchanged aluminosilicate glass. J. Mater. Sci. 39, 2399–2410 (2004)CrossRefGoogle Scholar
  46. 46.
    Bradshaw, W.: Stress profile determination in chemically strengthened glass using scattered light. J. Mater. Sci. 14, 2981–2988 (1979)CrossRefGoogle Scholar
  47. 47.
    Sane, A.Y., Cooper, A.R.: Stress buildup and relaxation during ion exchange strengthening of glass. J. Am. Ceram. Soc. 70(2), 86–89 (1987)CrossRefGoogle Scholar
  48. 48.
    Sglavo, V.M., Bonafini, M., Prezzi, A.: Procedure for residual stress profile determination by curvature measurements. Mech. Mater. 37, 887–898 (2005)CrossRefGoogle Scholar
  49. 49.
    Jain, V., Varshneya, A.K.: Finite-element analysis of network dilatation in ion-exchanged glass rods after slicing. J. Am. Ceram. Soc. 70(8), 595–598 (1987)CrossRefGoogle Scholar
  50. 50.
    Galeener, F.L., Geissberger, A.E.: Vibrational dynamics in 30Si-substituted vitreous SiO2. Phys. Rev. B. 27(10), 6199–6204 (1983)CrossRefGoogle Scholar
  51. 51.
    McMillan, P.: Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. Am. Mineral. 69, 622–644 (1984)Google Scholar
  52. 52.
    Lenoir, M., Grandjean, A., Poissonnet, S., Neuville, D.R.: Quantitation of sulfate solubility in borosilicate glasses using Raman spectroscopy. J. Non-Cryst. Solids. 355, 1468–1473 (2009)CrossRefGoogle Scholar
  53. 53.
    Colomban, P., Tournie, A., Gurlet, L.B.: Raman identification of glassy silicates used in ceramics, glass and jewellery : a tentative differentiation guide. J. Raman Spectrosc. 37, 841–852 (2006)CrossRefGoogle Scholar
  54. 54.
    Chorfa, A., Belkhir, N., Rubio, F., Rubio, J.: Ion exchange effect on the structural and mechanical behavior of colored glasses. J. Aust. Ceram. Soc. (2017).  https://doi.org/10.1007/s41779-017-0092-0 CrossRefGoogle Scholar
  55. 55.
    Anunmana, C., Anusavice, K.J., Mecholsky Jr., J.J.: Residual stress in glass : indentation crack and fractography approaches. Dent. Mater. 25, 1453–1458 (2009)CrossRefGoogle Scholar
  56. 56.
    Kese, K., Rowcliffe, D.J.: Nanoindentation method for measuring residual stress in brittle materials. J. Am. Ceram. Soc. 86(5), 811–816 (2003)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Research Unit of Emergent MaterialsUniversity Ferhat ABBAS Setif 1SetifAlgeria
  2. 2.Institute of Optics and Precision MechanicsUniversity Ferhat ABBAS Setif 1SetifAlgeria
  3. 3.Laboratory of Applied Optics, Institute of Optics and Precision MechanicsUniversity Ferhat ABBAS Setif 1SetifAlgeria

Personalised recommendations