Advertisement

Facile synthesis of potassium hexatitanate whiskers by calcination at low temperature

  • Minghao Li
  • Hao LiuEmail author
  • Zhoufu Wang
  • Nan Wei
  • Xitang Wang
  • Yan Ma
  • Wei Yan
Research

Abstract

Traditional calcination method is very popular for large-scale production of potassium hexatitanate (K2Ti6O13) whiskers. While the required high resultant temperature (always over 1000 °C) will consume more energy and increase the costs. Therefore, it is of great practical interest to explore efficient synthesis methods for K2Ti6O13 whiskers. In the present work, K2Ti6O13 whiskers were directly synthesized from TiO2, K2CO3, and carbon black by a facile calcination method. The well-crystallized K2Ti6O13 whiskers with 3–5 μm in length and 0.1–0.3 μm in diameter can be obtained when the molar ratio of K2CO3 to TiO2 was 1:6 at the calcining temperature as low as 800 °C. The generated CO2 from oxidation of carbon black slowed down the violence of the synthesis reaction rate for potassium titanates, and the lower synthesizing temperature decreased the volatilization loss of molten K2CO3, resulting in the promoted development of whiskers. The facile and low-cost synthesis method presented in this work indicated promising application in the large-scale production of K2Ti6O13 whiskers.

Keywords

Potassium hexatitanate whiskers Carbon black Crystal growth 

Notes

Funding information

This work was financially supported by the National Key R&D Program of China (No. 2017YFB0310701), the National Natural Science Foundation of China (No. 51474166), and the National College Students’ innovation and entrepreneurship training project, China (No. 201810488014).

References

  1. 1.
    Bao, N.Z., Shen, L.M., Feng, X., Lu, X.H.: High quality and yield in potassium titanate whiskers synthesized by calcination from hydrous titania. J. Am. Cerm. Soc. 87(3), 326–330 (2004)CrossRefGoogle Scholar
  2. 2.
    Ji, Z.J., Jin, H.Y., Luo, W.Y., Cheng, F.R., Chen, Y., Ren, Y.Z., Wu, Y.Q., Hou, S.E.: The effect of crystallinity of potassium titanate whisker on the tribological behavior of NAO friction materials. Tribol. Int. 107, 213–220 (2017)CrossRefGoogle Scholar
  3. 3.
    Tian, Q.H., Zhang, W.: The lithium storage properties of potassium octatitanate as anode materials for lithium-ion batteries. Mater. Lett. 190, 177–180 (2017)CrossRefGoogle Scholar
  4. 4.
    Sudheer, M., Subbaya, K.M., Jawali, D., Bhat, T.: Mechanical properties of potassium titanate whisker reinforced epoxy resin composites. J. Miner. Mater. Charact. Eng. 11(2), 193–211 (2012)Google Scholar
  5. 5.
    Tjong, S.C., Meng, Y.Z.: Mechanical and thermal properties of polycarbonate composites reinforced with potassium titanate whiskers. J. Appl. Polym. Sci. 72(4), 501–508 (2015)CrossRefGoogle Scholar
  6. 6.
    Chung, K., Hong, Y.: Friction and wear properties of scrap tire/potassium hexatitanate whisker composites. J. Ind. Eng. Chem. 19(4), 1234–1240 (2013)CrossRefGoogle Scholar
  7. 7.
    Liu, H., Wei, N., Wang, Z.F., Wang, X.T., Ma, Y.: Fabrication and properties of aluminum silicate fibrous materials with in situ synthesized K2Ti6O13 whiskers. Int. J. Min. Met. Mater. 24(11), 1335–1340 (2017)CrossRefGoogle Scholar
  8. 8.
    Wang, J., Li, C.N., Liang, B., Wang, X.Q.: Synthesis of potassium hexatitanate whiskers using hydrothermal method. Rare Metals. 28(1), 24–32 (2009)CrossRefGoogle Scholar
  9. 9.
    Meng, X.D., Wang, D.Z., Liu, J.H., Lin, B.X., Fu, Z.X.: Effects of titania different phases on the microstructure and properties of K2Ti6O13 nanowires. Solid State Commun. 137(3), 146–149 (2006)CrossRefGoogle Scholar
  10. 10.
    Ponce-Peña, P., González-Lozano, M.A., Escobedo-Bretado, M.A., Lira-Gómez, P., García-Sánchez, E., Rivera, E., Alexandrova, L.: Synthesis and characterization of potassium hexatitanate using boric acid as the flux. Ceram. Int. 41(8), 10051–10056 (2015)CrossRefGoogle Scholar
  11. 11.
    Xu, C.Y., Liu, Y.Z., Zhen, L., Wang, Z.L.: Disket-nanorings of K2Ti6O13 formed by self-spiraling of a nanobelt. J. Phys. Chem. C. 112(20), 7547–7551 (2008)CrossRefGoogle Scholar
  12. 12.
    Li, G.L., Wang, G.H., Hong, J.M.: Synthesis of K2Ti6O13 whiskers by the method of calcination of KF and TiO2 mixtures. Mater. Res. Bull. 34(14-15), 2341–2349 (1999)CrossRefGoogle Scholar
  13. 13.
    Liu, C., Yin, H., Liu, Y., Ren, M., Wang, A.: Synthesis of potassium hexatitanate whiskers starting from metatitanic acid and potassium carbonate and sulfate by calcination method. Mater. Res. Bull. 44(5), 1173–1178 (2009)CrossRefGoogle Scholar
  14. 14.
    Bao, N.Z., Feng, X., Lu, X.H., Yang, Z.H.: Study on the formation and growth of potassium titanate whiskers. J. Mater. Sci. 37(14), 3035–3043 (2002)CrossRefGoogle Scholar
  15. 15.
    Olivares, R.I., Chen, C.L., Wright, S.: The thermal stability of molten lithium-sodium-potassium carbonate and the influence of additives on the melting point. J. Sol. Energ. Eng. 134(4), 041002–041009 (2012)CrossRefGoogle Scholar
  16. 16.
    Zhang, Y.B., Han, B.L., Su, Z.J., Liu, B.B., Jiang, T.: Formation characteristics of calcium stannate from SnO2 and CaCO3 synthesized in CO-CO2 and air atmospheres. J. Phys. Chem. Solids. 121, 304–311 (2018)CrossRefGoogle Scholar
  17. 17.
    Liu, B.B., Zhang, Y.B., Su, Z.J., Li, G.H., Jiang, T.: Function mechanism of CO-CO2 atmosphere on the formation of Na2SnO3 from SnO2 and Na2CO3 during the roasting process. Powder Technol. 301, 102–109 (2016)CrossRefGoogle Scholar
  18. 18.
    Abe, H., Seki, H., Fukunaga, A., Egashira, M.: Preparation of bimodal porous mullite ceramics. J. Mater. Sci. 29(5), 1222–1226 (1994)CrossRefGoogle Scholar
  19. 19.
    Zhang, S., Marriott, N.J., Lee, W.E.: Thermochemistry and microstructures of MgO-C refractories containing various antioxidonts. J. Eur. Ceram. Soc. 21(8), 1037–1047 (2001)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • Minghao Li
    • 1
  • Hao Liu
    • 1
    Email author
  • Zhoufu Wang
    • 1
  • Nan Wei
    • 1
  • Xitang Wang
    • 1
  • Yan Ma
    • 1
  • Wei Yan
    • 1
  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science & TechnologyWuhanPeople’s Republic of China

Personalised recommendations