Advertisement

Synthesis, characterization and investigation of catalytic properties of metal-substituted (M = Mg2+, Zn2+ and Na+) calcium hydroxyapatite

  • Akvile Ezerskyte-MisevicieneEmail author
  • Irma Bogdanoviciene
  • Albinas Zilinskas
  • Aldona Beganskiene
  • Aivaras Kareiva
Research
  • 6 Downloads

Abstract

Calcium hydroxyapatite (Ca10(PO4)6(OH)2,CHAp) has unique characteristics and can be used as artificial material for the recovering of bones and teeth, for drug delivery systems, as adsorbent and catalyst. The specific chemical, structural and morphological properties of calcium hydroxyapatite are highly sensitive to the changes in chemical composition and processing conditions. Various kinds of transition metal and other cations can be readily accommodated into the apatite framework based on their large cation exchangeability. The traces of metal ions introduced in apatite structure can affect the lattice parameters, crystallinity, dissolution kinetics and other physical properties of apatite. The aim of this study was to find more economically accessible metal-substituted calcium hydroxyapatite–based catalyst. In this paper, the sol-gel and co-precipitation synthesis methods were used for the preparation of metal-substituted (M = Mg2+, Zn2+ and Na+) calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHAp) samples. The synthesized powders were characterized by powder X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and gas chromatography-mass spectrometry (GC-MS). The CHAp:M samples prepared by co-precipitation method were almost single-phase at different concentrations of substituents, while the sol-gel-derived CHAp:M specimens contained additional impurity phases. Metal-containing CHAp samples were tested as catalysts in a solvent-free synthesis of 2-adamantylidene(phenyl)amine. It was demonstrated that the zinc-containing CHAp improved the yield of Schiff base.

Keywords

CHAp Substitution Magnesium Zinc Sodium Catalysis 

Notes

Funding information

This work was supported by a grant SEMAT (No. SEN-02/2016) of the National Research Programme “Healthy ageing” from the Research Council of Lithuania.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bajpai, I., Kim, D.Y., Kyong-Jin, J., Song, I.H., Kim, S.: Response of human bone marrow-derived MSCs on triphasic Ca-P substrate with various HA/TCP ratio. J. Biomed. Mater. Res. B Appl. Biomater. 105(1), 72–80 (2017)CrossRefGoogle Scholar
  2. 2.
    Onuma, K., Iijima, M.: Artificial enamel induced by phase transformation of amorphous nanoparticles. Sci. Rep. 7(1), 2711 (2017).  https://doi.org/10.1038/s41598-017-02949-w CrossRefGoogle Scholar
  3. 3.
    Mehta, D., Mondal, P., Saharan, V.K., George, S.: Synthesis of hydroxyapatite nanorods for application in water defluoridation and optimization of process variables: advantage of ultrasonication with precipitation method over conventional method. Ultrason. Sonochem. 37, 56–70 (2017).  https://doi.org/10.1016/j.ultsonch.2016.12.035 CrossRefGoogle Scholar
  4. 4.
    Salama, A.: New sustainable hybrid material as adsorbent for dye removal from aqueous solutions. J. Colloid Interface Sci. 487, 348–353 (2017).  https://doi.org/10.1016/j.jcis.2016.10.034 CrossRefGoogle Scholar
  5. 5.
    Scudeller, L.A., Mavropoulos, E., Tanaka, M.N., Costa, A.M., Braga, C.A.C., Lopez, E.O., Mello, A., Rossi, A.M.: Effects on insulin adsorption due to zinc and strontium substitution in hydroxyapatite. Mater. Sci. Eng. C Mater. Biol. Appl. 79, 802–811 (2017).  https://doi.org/10.1016/j.msec.2017.05.061 CrossRefGoogle Scholar
  6. 6.
    Prichodko, A., Enrichi, F., Stankeviciute, Z., Benedetti, A., Grigoraviciute-Puroniene, I., Kareiva, A.: Study of Eu 3+ and Tm 3+ substitution effects in sol–gel fabricated calcium hydroxyapatite. J. Sol-Gel Sci. Technol. 81(1), 261–267 (2017)CrossRefGoogle Scholar
  7. 7.
    Fihri, A., Len, C., Varma, R.S., Solhy, A.: Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 347, 48–76 (2017).  https://doi.org/10.1016/j.ccr.2017.06.009 CrossRefGoogle Scholar
  8. 8.
    Padayachee, D., Dasireddy, V.D., Singh, S., Friedrich, H.B., Bharuth-Ram, K., Govender, A.: An investigation of iron modified hydroxyapatites used in the activation of n-octane. Mol. Catal. 438, 256–266 (2017).  https://doi.org/10.1016/j.mcat.2017.05.032 CrossRefGoogle Scholar
  9. 9.
    Bogdanoviciene, I., Cepenko, M., Traksmaa, R., Kareiva, A., Tõnsuaadu, K.: Formation of Ca–Zn–Na phosphate bioceramic material in thermal processing of EDTA sol–gel precursor. J. Therm. Anal. Calorim. 121(1), 107–114 (2015).  https://doi.org/10.1007/s10973-015-4507-2 CrossRefGoogle Scholar
  10. 10.
    Trinkunaite-Felsen, J., Prichodko, A., Semasko, M., Skaudzius, R., Beganskiene, A., Kareiva, A.: Synthesis and characterization of iron-doped/substituted calcium hydroxyapatite from seashells Macomabalthica (L.). Adv. Powder Technol. 26(5), 1287–1293 (2015).  https://doi.org/10.1016/j.apt.2015.07.002 CrossRefGoogle Scholar
  11. 11.
    Andrade, F.A.C., de Oliveira Vercik, L.C., Monteiro, F.J., da Silva Rigo, E.C.: Preparation, characterization and antibacterial properties of silver nanoparticles–hydroxyapatite composites by a simple and eco-friendly method. Ceram. Int. 42(2), 2271–2280 (2016).  https://doi.org/10.1016/j.ceramint.2015.10.021 CrossRefGoogle Scholar
  12. 12.
    Lowry, N., Han, Y., Meenan, B.J., Boyd, A.R.: Strontium and zinc co-substituted nanophase hydroxyapatite. Ceram. Int. 43(15), 12070–12078 (2017).  https://doi.org/10.1016/j.ceramint.2017.06.062 CrossRefGoogle Scholar
  13. 13.
    Fakharzadeh, A., Ebrahimi-Kahrizsangi, R., Nasiri-Tabrizi, B., Basirun, W.J.: Effect of dopant loading on the structural features of silver-doped hydroxyapatite obtained by mechanochemical method. Ceram. Int. 43(15), 12588–12598 (2017).  https://doi.org/10.1016/j.ceramint.2017.06.136 CrossRefGoogle Scholar
  14. 14.
    Kolmas, J., Velard, F., Jaguszewska, A., Lemaire, F., Kerdjoudj, H., Gangloff, S.C., Kaflak, A.: Substitution of strontium and boron into hydroxyapatite crystals: effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells. Mater. Sci. Eng. C Mater. Biol. Appl. 79, 638–646 (2017).  https://doi.org/10.1016/j.msec.2017.05.066 CrossRefGoogle Scholar
  15. 15.
    Kaur, K., Singh, K., Anand, V., Islam, N., Bhatia, G., Kalia, N., Singh, J.: Lanthanide (= Ce, Pr, Nd and Tb) ions substitution at calcium sites of hydroxyl apatite nanoparticles as fluorescent bio probes: experimental and density functional theory study. Ceram. Int. 43(13), 10097–10108 (2017)CrossRefGoogle Scholar
  16. 16.
    Yu, H.G., Liu, K.J., Zhang, F.M., Wei, W.X., Chen, C., Huang, Q.L.: Microstructure and in vitro bioactivity of silicon-substituted hydroxyapatite. Silicon. 9(4), 543–553 (2017).  https://doi.org/10.1007/s12633-015-9298-3 CrossRefGoogle Scholar
  17. 17.
    Ratnayake, J.T., Mucalo, M., Dias, G.J.: Substituted hydroxyapatites for bone regeneration: a review of current trends. J. Biomed. Mater. Res. B Appl. Biomater. 105(5), 1285–1299 (2017).  https://doi.org/10.1002/jbm.b.33651 CrossRefGoogle Scholar
  18. 18.
    Boukha, Z., Kacimi, M., Ziyad, M., Ensuque, A., Bozon-Verduraz, F.: Comparative study of catalytic activity of Pd loaded hydroxyapatite and fluoroapatite in butan-2-ol conversion and methane oxidation. J. Mol. Catal. A Chem. 270(1–2), 205–213 (2007).  https://doi.org/10.1016/j.molcata.2007.01.048 CrossRefGoogle Scholar
  19. 19.
    Ji, S., Murakami, S., Kamitakahara, M., Ioku, K.: Fabrication of titania/hydroxyapatite composite granules for photo-catalyst. Mater. Res. Bull. 44(4), 768–774 (2009).  https://doi.org/10.1016/j.materresbull.2008.09.047 CrossRefGoogle Scholar
  20. 20.
    Shaabani, A., Shaabani, S., Afaridoun, H.: Highly selective aerobic oxidation of alkyl arenes and alcohols: cobalt supported on natural hydroxyapatite nanocrystals. RSC Adv. 6(54), 48396–48404 (2016).  https://doi.org/10.1039/c6ra04519g CrossRefGoogle Scholar
  21. 21.
    Dasireddy, V.D., Singh, S., Friedrich, H.B.: Effect of the support on the oxidation of heptane using vanadium supported on alkaline earth metal hydroxyapatites. Catal. Lett. 145(2), 668–678 (2015).  https://doi.org/10.1007/s10562-014-1424-0 CrossRefGoogle Scholar
  22. 22.
    Dobosz, J., Hull, S., Zawadzki, M.: Catalytic activity of cobalt and cerium catalysts supported on calcium hydroxyapatite in ethanol steam reforming. Pol. J. Chem. Technol. 18(3), 59–67 (2016).  https://doi.org/10.1515/pjct-2016-0049 CrossRefGoogle Scholar
  23. 23.
    Ignat, L., Ignat, M.E., Gradinaru, I.: Hydroxyapatite-supported silver nanoparticles and preliminary investigations of their catalytic potential. Rev. Chim. 68(6), 1371–1374 (2017)Google Scholar
  24. 24.
    Lamonier, C., Lamonier, J.-F., Aellach, B., Ezzamarty, A., Leglise, J.: Specific tuning of acid/base sites in apatite materials to enhance their methanol thiolation catalytic performances. Catal. Today. 164(1), 124–130 (2011).  https://doi.org/10.1016/j.cattod.2010.10.035 CrossRefGoogle Scholar
  25. 25.
    Ben Osman, M., Diallo Garcia, S., Krafft, J.M., Methivier, C., Blanchard, J., Yoshioka, T., Kubo, J., Costentin, G.: Control of calcium accessibility over hydroxyapatite by post-precipitation steps: influence on the catalytic reactivity toward alcohols. Phys. Chem. Chem. Phys. 18(40), 27837–27847 (2016).  https://doi.org/10.1039/c6cp05294k CrossRefGoogle Scholar
  26. 26.
    Ben Osman, M., Krafft, J.M., Millot, Y., Averseng, F., Yoshioka, T., Kubo, J., Costentin, G.: Molecular understanding of the bulk composition of crystalline nonstoichiometric hydroxyapatites: application to the rationalization of structure–reactivity relationships. Eur. J. Inorg. Chem. 2016(17), 2709–2720 (2016).  https://doi.org/10.1002/ejic.201600244 CrossRefGoogle Scholar
  27. 27.
    Stosic, D., Bennici, S., Sirotin, S., Calais, C., Couturier, J.L., Dubois, J.L., Travert, A., Auroux, A.: Glycerol dehydration over calcium phosphate catalysts: effect of acidic-basic features on catalytic performance. Appl. Catal. A Gen. 447, 124–134 (2012).  https://doi.org/10.1016/j.apcata.2012.09.029 CrossRefGoogle Scholar
  28. 28.
    Carniti, P., Gervasini, A., Tiozzo, C., Guidotti, M.: Niobium-containing hydroxyapatites as amphoteric catalysts: synthesis, properties, and activity. ACS Catal. 4(2), 469–479 (2014).  https://doi.org/10.1021/cs4010453 CrossRefGoogle Scholar
  29. 29.
    Ehiro, T., Misu, H., Nitta, S., Baba, Y., Katoh, M., Katou, Y., Ninomiya, W., Sugiyama, S.: Effects of acidic-basic properties on catalytic activity for the oxidative dehydrogenation of isobutane on calcium phosphates, doped and undoped with chromium. J. Chem. Eng. Jpn. 50(2), 122–131 (2017).  https://doi.org/10.1252/jcej.16we217 CrossRefGoogle Scholar
  30. 30.
    Ogo, S., Onda, A., Yanagisawa, K.: Hydrothermal synthesis of vanadate-substituted hydroxyapatites, and catalytic properties for conversion of 2-propanol. Appl. Catal. A Gen. 348(1), 129–134 (2008).  https://doi.org/10.1016/j.apcata.2008.06.035 CrossRefGoogle Scholar
  31. 31.
    Ramesh, K., Ling, E.G.Y., Gwie, C.G., White, T.J., Borgna, A.: Structure and surface reactivity of WO4 2−, SO4 2−, PO4 3− modified ca-hydroxyapatite catalysts and their activity in ethanol conversion. J. Phys. Chem. C Nanomater. Interfaces. 116(35), 18736–18745 (2012).  https://doi.org/10.1021/jp304187v CrossRefGoogle Scholar
  32. 32.
    Oh, S.C., Wu, Y., Tran, D.T., Lee, I.C., Lei, Y., Liu, D.: Influences of cation and anion substitutions on oxidative coupling of methane over hydroxyapatite catalysts. Fuel. 167, 208–217 (2016).  https://doi.org/10.1016/j.fuel.2015.11.058 CrossRefGoogle Scholar
  33. 33.
    Gruselle, M., Tonsuaadu, K.: Tunable calcium-apatites as solid catalysts for classical organic reactions. Curr. Org. Chem. 21(8), 688–697 (2017).  https://doi.org/10.2174/1385272821666161219155302 CrossRefGoogle Scholar
  34. 34.
    Matsumura, Y., Sugiyama, S., Hayashi, H., Shigemota, N., Saitoh, K., Moffat, J.B.: Strontium hydroxyapatites: catalytic properties in the oxidative dehydrogenation of methane to carbon oxides and hydrogen. J. Mol. Catal. A Chem. 92(1), 81–94 (1994).  https://doi.org/10.1016/0304-5102(94)00058-1 CrossRefGoogle Scholar
  35. 35.
    Sugiyama, S., Minami, T., Moriga, T., Hayashi, H., Koto, K., Tanaka, M., Moffat, J.B.: Surface and bulk properties, catalytic activities and selectivities in methane oxidation on near-stoichiometric calcium hydroxyapatites. J. Mater. Chem. 6(3), 459–464 (1996).  https://doi.org/10.1039/Jm9960600459 CrossRefGoogle Scholar
  36. 36.
    Badrour, L., Oukerroum, J., Amenzou, H., Bensitel, M., Sadel, A., Zahir, M.: Décomposition de l’isopropanol sur les apatitesmixtes calcium-argent. Ann. Chim. Sci. Mater. 26(6), 131–138 (2001)CrossRefGoogle Scholar
  37. 37.
    Sugiyama, S., Moffat, J.B.: Cation effects in the conversion of methanol on calcium, strontium, barium and lead hydroxyapatites. Catal. Lett. 81(1–2), 77–81 (2002).  https://doi.org/10.1023/A:1016012106985 CrossRefGoogle Scholar
  38. 38.
    Ben Moussa, S., Lachheb, J., Gruselle, M., Maaten, B., Kriis, K., Kanger, T., Tõnsuaadu, K., Badraoui, B.: Calcium, barium and strontium apatites: a new generation of catalysts in the Biginelli reaction. Tetrahedron. 73(46), 6542–6548 (2017).  https://doi.org/10.1016/j.tet.2017.09.051 CrossRefGoogle Scholar
  39. 39.
    Wuyts, S., De Vos, D.E., Verpoort, F., Depla, D., De Gryse, R., Jacobs, P.A.: A heterogeneous Ru–hydroxyapatite catalyst for mild racemization of alcohols. J. Catal. 219(2), 417–424 (2003).  https://doi.org/10.1016/S0021-9517(03)00217-3 CrossRefGoogle Scholar
  40. 40.
    Carvalho, D.C., Pinheiro, L.G., Campos, A., Millet, E.R.C., de Sousa, F.F., Filho, J.M., Saraiva, G.D., da Silva, E.C., Fonseca, M.G., Oliveira, A.C.: Characterization and catalytic performances of copper and cobalt-exchanged hydroxyapatite in glycerol conversion for 1-hydroxyacetone production. Appl. Catal. A Gen. 471, 39–49 (2014).  https://doi.org/10.1016/j.apcata.2013.11.014 CrossRefGoogle Scholar
  41. 41.
    Goller, G., Oktar, F., Agathopoulos, S., Tulyaganov, D., Ferreira, J., Kayali, E., Peker, I.: Effect of sintering temperature on mechanical and microstructural properties of bovine hydroxyapatite (BHA). J. Sol-Gel Sci. Technol. 37(2), 111–115 (2006).  https://doi.org/10.1007/s10971-006-6428-9 CrossRefGoogle Scholar
  42. 42.
    Garskaite, E., Gross, K.-A., Yang, S.-W., Yang, T.C.-K., Yang, J.-C., Kareiva, A.: Effect of processing conditions on the crystallinity and structure of carbonated calcium hydroxyapatite (CHAp). CrystEngComm. 16(19), 3950–3959 (2014).  https://doi.org/10.1039/c4ce00119b CrossRefGoogle Scholar
  43. 43.
    Trinkunaite-Felsen, J., Stankeviciute, Z., Yang, J.C., Yang, T.C.K., Beganskiene, A., Kareiva, A.: Calcium hydroxyapatite/whitlockite obtained from dairy products: simple, environmentally benign and green preparation technology. Ceram. Int. 40(8), 12717–12722 (2014).  https://doi.org/10.1016/j.ceramint.2014.04.120 CrossRefGoogle Scholar
  44. 44.
    Klemkaite-Ramanauske, K., Zilinskas, A., Taraskevicius, R., Khinsky, A., Kareiva, A.: Preparation of Mg/Al layered double hydroxide (LDH) with structurally embedded molybdate ions and application as a catalyst for the synthesis of 2-adamantylidene(phenyl)amine Schiff base. Polyhedron. 68, 340–345 (2014).  https://doi.org/10.1016/j.poly.2013.11.009 CrossRefGoogle Scholar
  45. 45.
    Malakauskaite-Petruleviciene, M., Stankeviciute, Z., Niaura, G., Garskaite, E., Beganskiene, A., Kareiva, A.: Characterization of sol-gel processing of calcium phosphate thin films on silicon substrate by FTIR spectroscopy. Vib. Spectrosc. 85, 16–21 (2016).  https://doi.org/10.1016/j.vibspec.2016.03.023 CrossRefGoogle Scholar
  46. 46.
    Malakauskaite-Petruleviciene, M., Stankeviciute, Z., Beganskiene, A., Kareiva, A.: Sol–gel synthesis of calcium hydroxyapatite thin films on quartz substrate using dip-coating and spin-coating techniques. J. Sol-Gel Sci. Technol. 71(3), 437–446 (2014).  https://doi.org/10.1007/s10971-014-3394-5 CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Institute of ChemistryVilnius UniversityVilniusLithuania

Personalised recommendations