Advertisement

Philippine natural zeolite surface engineered with CuO nanowires via a one-step thermal decomposition route

  • Eleanor OlegarioEmail author
  • Jenichi Clairvaux Felizco
  • Christian Mark Pelicano
  • Herman Mendoza
  • Hideki Nakajima
Research
  • 6 Downloads

Abstract

Novel CuO nanowire-zeolite composite was successfully fabricated through facile thermal decomposition of CuSO4 • 5H2O as the lone precursor. The natural zeolites have porous and plate-like structures, which suggest the presence of clinoptilolite-heulandite family of zeolites. After annealing of Cu-exchanged zeolite at 550 °C, CuO nanowires were synthesized with a mean diameter of 80 nm and length of 1.5 μm. XRD analysis revealed that the samples annealed at 550 °C showed clinoptilolite-heulandite peaks, as well as a broad CuO peak. Annealing at a higher temperature of 800 °C led to the amorphization of the zeolite peaks. The XPS spectra of the zeolite with Cu annealed at 400, 550, and 800 °C confirmed that annealing at 550 °C preferably forms CuO rather than Cu2O on zeolite surface. These analyses identified that annealing at 550 °C functionalized the Cu-exchanged zeolite surface, which is desirable for a wide variety of applications such as catalysis, sorbents for environmental applications, and gas sensors.

Keywords

CuO nanowire Philippine natural zeolite Thermal decomposition 

Notes

Funding information

This study was funded by the Department of Science and Technology through the Engineering Research and Development for Technology (DOST-ERDT) and ADMATEL. The XPS experiment research was provided by the National Nanotechnology Center (NANOTEC) under the National Science and Technology Department Agency (NSTDA). The XPS measurements were supported by BL-5.3 SUT-NANOTEC-SLRI Beamline staff members. Support was also provided by SAILE Industries, Inc. for the minerals used in the study and its preliminary data analysis and Oceanagold Philippines for the research grant through its Mine Technology Program.

References

  1. 1.
    Liu, A., Nie, S., Liu, G., Zhu, H., Zhu, C., Shin, B., Fortunato, E., Martins, R., Shan, F.: In situ one-step synthesis of p-type copper oxide for low-temperature, solution-processed thin-film transistors. J. Mater. Chem. C. 5, 2524–2530 (2017)CrossRefGoogle Scholar
  2. 2.
    Tunesi, M., Soomro, R., Ozturk, R.: The in situ growth of CuO nanostructures on an ITO substrate and its application as a highly sensitive electrode for the electrochemical determination of N-acetyl-L-cysteine. J. Mater. Chem. C. 5, 2708–2716 (2017)CrossRefGoogle Scholar
  3. 3.
    Rana, S., Jonnalagaddam, S.: CuO/graphene oxide nanocomposite as highly active and durable catalyst for selective oxidation of cyclohexane. ChemistrySelect. 2, 2277–2281 (2017)CrossRefGoogle Scholar
  4. 4.
    Sierra-Pereira, C., Urquieta-González, E.: Reduction of NO with CO on CuO or Fe2O3 catalysts supported on TiO2 in the presence of O2, SO2 and water steam. Fuel. 118, 137–147 (2014)CrossRefGoogle Scholar
  5. 5.
    Subalakshmi, P., Sivashanmugam, A.: CuO nano hexagons, an efficient energy storage material for Li-ion battery application. J. Alloys Compd. 690, 523–531 (2017)CrossRefGoogle Scholar
  6. 6.
    Jeong, S., Jung, S., Yoo, K., Kim, S.: Selective catalytic reduction of NO by NH3 over a bulk sulfated CuO/γ-Al2O3 catalyst. Ind. Eng. Chem. Res. 38, 2210–2215 (1999)CrossRefGoogle Scholar
  7. 7.
    Antony, A., Sun, M., Jin-Hyo, B., You, H.: Nano sheets, needles and grains-like CuO/γ-Al2O3 catalysts’ performance in carbon monoxide oxidation. J. Solid State Chem. 265, 431–439 (2018)CrossRefGoogle Scholar
  8. 8.
    Subbulekshmi, N.L., Subramanian, E.: Nano CuO immobilized fly ash zeolite Fenton-like catalyst for oxidative degradation of p-nitrophenol and p-nitroaniline. J. Environ. Chem. Eng. 5, 1360–1371 (2017)CrossRefGoogle Scholar
  9. 9.
    Peng, G., Wu, S., Ellis, J., Xu, X., Xu, G., Yu, C., Star, A.: Single-walled carbon nanotubes templated CuO networks for gas sensing. J. Mater. Chem. C. 4, 6575–6580 (2016)CrossRefGoogle Scholar
  10. 10.
    Sung, W.-Y., Kim, W.-J., Lee, S.-M., Lee, H.-Y., Kim, Y.-H., Park, K.-H., Lee, S.: Field emission characteristics of CuO nanowires by hydrogen plasma treatment. Vacuum. 81, 851–856 (2007)CrossRefGoogle Scholar
  11. 11.
    Yu-Feng, T., Shu-Jun, H., Shi-Shen, Y., Liang-Mo, M.: Oxide magnetic semi-conductors: materials, properties, and devices. Chin. Phys. B. 22, 088505 (2013)CrossRefGoogle Scholar
  12. 12.
    Langmar, O., Ganivet, C., Schol, P., Scharl, T., de la Torre, G., Torres, T., Costa, R., Guldi, D.: Improving charge injection and charge transport in CuO-based p-type DSSCs – a quick and simple precipitation method for small CuO nanoparticles. J. Mater. Chem. C. 6, 5176–5180 (2018)CrossRefGoogle Scholar
  13. 13.
    Siddiqui, H., Qureshi, M.S., Haque, F.: Hexamine (HMT) assisted wet chemically synthesized CuO nanostructures with controlled morphology and adjustable optical behavior. Opt. Quant. Electron. 48, 349 (2016)CrossRefGoogle Scholar
  14. 14.
    Shaalan, N.M., Rashad, M., Abdel-Rahim, M.A.: CuO nanoparticles synthesized by microwave-assisted method for methane sensing. Opt. Quant. Electron. 48, 531 (2016)CrossRefGoogle Scholar
  15. 15.
    Shehayeb, S., Deschanels, X., Karamé, I., Ghannam, L., Toquer, G.: Spectrally selective coatings obtained from electrophoretic deposition of CuO nanoparticles. Surf. Coat. Technol. 322, 38–45 (2017)CrossRefGoogle Scholar
  16. 16.
    Pelicano, C. M., Felizco, J. C., Balela, M. D.: Formation of copper oxide nanostructures by solution-phase method for antibacterial applications, Mosbeh Kaloop (Ed.), Advanced Materials, Structures and Mechanical Engineering, (2015) 203 Google Scholar
  17. 17.
    Muiva, C., Maabong, K., Moditswe, C.: CuO nanostructured thin films synthesised by chemical bath deposition on seed layers deposited by successive ionic layer adsorption and reaction and chemical spray pyrolysis techniques. Thin Solid Films. 616, 48–54 (2016)CrossRefGoogle Scholar
  18. 18.
    Pelicano, C.M., Yanagi, H.: Efficient solid-state perovskite solar cells based on nanostructured zinc oxide designed by strategic low temperature water oxidation. J. Mater. Chem. C. 5, 8059–8070 (2017)CrossRefGoogle Scholar
  19. 19.
    Nezamzadeh-Ejhieh, A., Salimi, Z.: Heterogeneous photodegradation catalysis of o-phenylenediamine using CuO/X zeolite. Appl Catal, A. 390, 110 (2010)CrossRefGoogle Scholar
  20. 20.
    Song, W., Li, G., Grassian, V.H., Larsen, S.C.: Development of improved materials for environmental applications: nanocrystalline NaY zeolites. Environ. Sci. Technol. 39, 1214 (2005)CrossRefGoogle Scholar
  21. 21.
    Seraj, S., Ferron, R., Juenger, M.: Calcining natural zeolites to improve their effect on cementitious mixture workability. Cem. Concr. Res. 85, 102–110 (2016)CrossRefGoogle Scholar
  22. 22.
    Peric, J., Trgo, M., Vukojevic Medvidovic, N.: Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms. Water Res. 38, 1893–1899 (2004)CrossRefGoogle Scholar
  23. 23.
    Meshko, V., Markovska, L., Mincheva, M., Rodrigues, A.: Adsorption of basic dyes on granular activated carbon and natural zeolite. Water Res. 35, 3357–3366 (2001)CrossRefGoogle Scholar
  24. 24.
    Poona, C., Lama, U., Koua, S., Lin, Z.: A study on the hydration rate of natural zeolite blended cement pastes. Constr. Build. Mater. 13, 427–432 (1999)CrossRefGoogle Scholar
  25. 25.
    Lateef, A., Nazir, R., Jamil, N., Alam, S., Shan, R., Khan, M., Saleem, M.: Synthesis and characterization of zeolite based nano–composite: an environment friendly slow release fertilizer. Microporous Mesoporous Mater. 232, 174–183 (2016)CrossRefGoogle Scholar
  26. 26.
    Motsi, T., Rowson, N., Simmons, M.: Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 92, 42–48 (2009)CrossRefGoogle Scholar
  27. 27.
    Pavelic´, K., Hadžija, M., Bedrica, L., Pavelic´, J., Dikic, I., Katic, M., Kralj, M., Bosnar, M., Kapitanovic´, S., Poljak-Blaži, M., Križanac, S., Stojkovic´, R., Jurin, M., Subotic, B., Colic, M.: Natural zeolite clinoptilolite: new adjuvant in anticancer therapy. J. Mol. Med. 78, 708–720 (2001)CrossRefGoogle Scholar
  28. 28.
    Herron, N., Tolman, C.: A highly selective zeolite catalyst for hydrocarbon oxidation. A completely inorganic mimic of the alkane ω-hydroxylases. J. Am. Chem. Soc. 109, 2837–2839 (1987)CrossRefGoogle Scholar
  29. 29.
    Göltl, F., Bulo, R., Hafner, J., Sautet, P.: What makes copper-exchanged SSZ-13 zeolite efficient at cleaning car exhaust gases? J. Phys. Chem. Lett. 4, 2244–2249 (2013)CrossRefGoogle Scholar
  30. 30.
    Hanna, S., Miller, R., Lenihan, H.: Accumulation and toxicity of copper oxide engineered nanoparticles in a marine mussel. Nanomaterials. 4, 535–547 (2014)CrossRefGoogle Scholar
  31. 31.
    Ethiraj, A., Kang, D.: Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res. Lett. 7, 70–74 (2012)CrossRefGoogle Scholar
  32. 32.
    Wu, H.-Q., Wei, X.-W., Shao, M.-W., Gu, J.-S., Qu, M.-Z.: Synthesis of copper oxide nanoparticles using carbon nanotubes as templates. Chem. Phys. Lett. 364, 152 (2002)CrossRefGoogle Scholar
  33. 33.
    Xu, J., Ji, W., Shen, Z., Tang, S., Ye, X., Jia, D., Xin, X.: Preparation and characterization of CuO nanocrystals. J. Solid State Chem. 147, 516–519 (1999)CrossRefGoogle Scholar
  34. 34.
    Bakhtiari, F., Zivdar, M., Atashi, H., Seyed Bagheri, S.A.: Bioleaching of copper from smelter dust in a series of airlift bioreactors. Hydrometallurgy. 90, 40–45 (2008)CrossRefGoogle Scholar
  35. 35.
    Boruban, C., Nalbant Esenturk, E.: Synthesis of CuO nanostructures on zeolite-Y and investigation of their CO2 adsorption properties. J. Mater. Res. 32, 3669–3678 (2017)CrossRefGoogle Scholar
  36. 36.
    Razavi, R., Loghman-Estarki, M.: Synthesis and characterizations of copper oxide nanoparticles within zeolite Y. J. Clust. Sci. 4, 1097–1106 (2012)CrossRefGoogle Scholar
  37. 37.
    Cui, T., Liu, Z., Zheng, X., Liu, Z., Li, Y., Li, W., Wang, B., Guo, K., Han, J.: Zeolite-based CuO nanotubes catalysts: investigating the characterization, mechanism, and decolouration process of methylene blue. J. Nanopart. Res. 16, 2608 (2014)CrossRefGoogle Scholar
  38. 38.
    Olegario-Sanchez, E.M., Pelicano, C.M.: Characterization of Philippine natural zeolite and its application for heavy metal removal from acid mine drainage (AMD), 407-411. Key Eng. Mater. 737, (2017).  https://doi.org/10.4028/www.scientific.net/KEM.737.407
  39. 39.
    Olegario, E., Pelicano, C. M., Felizco, J. C., Mendoza, H.: Thermal stability and heavy metal (As5+, Cu2+, Ni2+, Pb2+ and Zn2+) ions uptake of the natural zeolites from the Philippines. Mater. Res. Express. 6, 085204 (2019)  https://doi.org/10.1088/2053-1591/ab1a73
  40. 40.
    Olegario-Sanchez, E., Felizco, J.C., Mulimbayan, F.: Investigation of the thermal behavior of Philippine natural zeolites. AIP Conference Proceedings. 1901, 070005 (2017).  https://doi.org/10.1063/1.5010514 CrossRefGoogle Scholar
  41. 41.
    Olegario-Sanchez, E., Pelicano, C.M.: Comparative study of As (III) and Zn (II) removal from aqueous solutions using Philippine natural zeolite and alumina. AIP Conference Proceedings. 1901, 070004 (2017).  https://doi.org/10.1063/1.5010513 CrossRefGoogle Scholar
  42. 42.
    Olegario, E., Pelicano, C.M., Dahonog, L., Nakajima, H.: Novel ZnO nanostructures on Philippine natural zeolite (PNZ) framework designed via thermal decomposition process of solution-based ZnCl2 precursor. Mater. Res. Express. 6, 015005 (2019)CrossRefGoogle Scholar
  43. 43.
    Kaura, M., Muthea, K., Despandeb, S., Choudhuryc, S., Singhd, J., Vermae, N., Guptaa, S., Yakhmia, J.: Growth and branching of CuO nanowires by thermal oxidation of copper. J. Cryst. Growth. 289, 670–675 (2006)CrossRefGoogle Scholar
  44. 44.
    Yanga, Q., Guo, Z., Zhou, X., Zou, J., Liang, S.: Ultrathin CuO nanowires grown by thermal oxidation of copper powders in air. Mater. Lett. 153, 128–131 (2015)CrossRefGoogle Scholar
  45. 45.
    Duvarcı, O., Akdeniz, Y., Ozmıhc, F., Ulku, S., Balkose, D., Ciftcioglu, M.: Thermal behavior of a zeolitic tuff. Ceram. Int. 33, 795–801 (2007)CrossRefGoogle Scholar
  46. 46.
    Hojabri, A., Hajakbari, F., Soltanpoor, N., Sadat Hedayati, M.: Annealing temperature effect on the properties of untreated and treated copper films with oxygen plasma. J. Theor. Appl. Phys. 8, 132 (2014)CrossRefGoogle Scholar
  47. 47.
    Lin, C.-C., Li, Y.-Y.: Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dehydrate. Mater. Chem. Phys. 113, 334–337 (2009)CrossRefGoogle Scholar
  48. 48.
    Cruciani, G.: Zeolites upon heating: factors governing their thermal stability and structural changes. J. Phys. Chem. Solids. 67, 1973–1994 (2006)CrossRefGoogle Scholar
  49. 49.
    Bare, S., Knop-Gericke, A., Teschner, D., Hävacker, M., Blume, R., Rocha, T., Schlögl, R., Chan, A., Blackwell, N., Charochaka, M., Veen, R., Brongersma, H.: Surface analysis of zeolites: an XPS, variable kinetic energy XPS, and low energy ion scattering study. Surf. Sci. 648, 376–382 (2016)CrossRefGoogle Scholar
  50. 50.
    Poulston, S., Parlett, P.M., Stone, P., Bowker, M.: Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 24, 811–820 (1996)CrossRefGoogle Scholar
  51. 51.
    Wang, Y., Lü, Y., Zhan, W., Xie, Z., Kuang, Q., Zheng, L.: Synthesis of porous Cu2O/CuO cages using Cu-based metal–organic frameworks as templates and their gas-sensing properties. J. Mater. Chem. A. 3, 12796–12803 (2015)CrossRefGoogle Scholar
  52. 52.
    Gao, D., Zhang, J., Zhu, J., Qi, J., Zhang, Z., Sui, W., Shi, H., Xue, D.: Vacancy-mediated magnetism in pure copper oxide nanoparticles. Nanoscale Res. Lett. 5, 769 (2010)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Department of Mining, Metallurgical and Materials EngineeringUniversity of the Philippines DilimanQuezon CityPhilippines
  2. 2.Synchrotron Light Research InstituteNakhon RatchasimaThailand

Personalised recommendations