Advertisement

Production parameters affecting the synthesis and properties of hBN-SiC composites

  • 9 Accesses

Abstract

In this study, the hexagonal boron nitride (hBN)-SiC composite powder synthesis was investigated with an in situ reaction method. Boric acid (H3BO3) and urea (CO(NH2)2) were used for hBN formation. In the hBN-SiC composite powder synthesis, primarily raw materials were homogeneously stirred in ethanol with Si3N4 balls. The samples were calcined and sintered by spark plasma sintering at 2000 °C under pressure of 50 MPa for 15 min. The characterization of composite samples was carried out by XRD, SEM-EDS, FTIR, and TG-DTA. The bulk density, Vickers hardness, and Young’s modulus of samples were also measured. Composites were obtained, which had homogeneous microstructure. Residual boron oxides were found in samples with short calcination times. Moreover, it was found that the production parameters affect the physical properties of the composites and the amount of the hBN in sintered samples.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Abderrazak, H., Hadj Hmida, E.S.B.: Silicon carbide: synthesis and properties. In: Gerhardt, R. (ed.) Properties and Applications of Silicon Carbide, pp. 361–388. InTech, Tunisia (2011)

  2. 2.

     Rashed,A.H.: Properties and characteristics of silicon carbide. s.l.: Poco Graphite, TX. 76234, 1–19 (2002)

  3. 3.

    Saddow, S.E., Agarwal, A.: Advances in Silicon Carbide Processing and Applications, pp. 1–58053–1–740-5. Artech House, London (2004)

  4. 4.

    Shi, X., Wang, S., Yang, H., Duan, X., Dong, X.: Fabrication and characterization of hexagonal boron nitride powder by spray drying and calcining-nitriding technology. J. Solid State Chem. 181, 2274–2278 (2008)

  5. 5.

     Ertuğ, B., Addemir, O.: Hegzagonal bor nitrür seramik tozlarının temel endüstriyel üretim yöntemleri. http://www.metalurji.org.tr/dergi/dergi136/d136_5458.pdf. Accessed 15 July 2017

  6. 6.

    Jin, H., Xu, H., Qiao, G., Gao, J., Jin, Z.: Study of machinable silicon carbide-boron nitride ceramic composites. Mater. Sci. Eng. A. 214–217 (2008)

  7. 7.

    Jin, H., Gao, N., Qiao, G., Gao, J.: Fabrication and properties of machinable SiC/h-BN nano-composites. J. Ceram. Process. Res. 9, 630–633 (2008)

  8. 8.

    Zhang, G.J., Beppu, Y., Ohji, T., Kanzakı, S.: Reaction mechanism and microstructure development of strain tolerant in situ SiC–BN composites. Acta Mater. 49, 77–82 (2000)

  9. 9.

    Zhang, G.J., Ohji, T.: Effect of BN content on elastic modulus and bending strength of SiC–BN in situ composites. Mater. Res. Soc. 15, 1876–1880 (2000)

  10. 10.

    Zhang, G.J., Ohji, T.: In situ reaction synthesis of silicon carbide–boron nitride composites. J. Am. Ceram. Soc. 84, 1475–1479 (2001)

  11. 11.

    Zhang, G.J., Yang, J.F., Deng, Z.Y., Ohjı, T.: Effect of Y2O3-Al2O3 additive on the phase formation and densification process of in situ SiC-BN composite. J. Ceram. Soc. Jpn. 109, 45–48 (2001)

  12. 12.

    Zhang, G.J., Beppu, Y., Ando, M.: In situ reaction synthesis of silicon carbide–boron nitride composite from silicon nitride-boron oxide-carbon. J. Am. Ceram. Soc. 85, 2858–2860 (2002)

  13. 13.

    Zheng, Y.T., Li, H.B., Zhou, T.: Microstructure and mechanical properties of h-BN–SiC ceramic composites prepared by in situ combustion synthesis. Mater. Sci. Eng. A 540, 102–106 (2012)

  14. 14.

    Kusunose, T., Sekino, T., Ando, Y.: Synthesis of SiC/BN nanocomposite powders by carbothermal reduction and nitridation of borosilicate glass, and the properties of their sintered composites. Nanotechnology. 19, 275603 (2008) 9pp

  15. 15.

    Kusunose, T., Sekino, T., Niihara, K.: Contact damage of silicon carbide/boron nitride nanocomposites. J. Am. Ceram. Soc. 90, 3341–3344 (2007)

  16. 16.

    Wang, X., Qiao, G., Jin, Z.: Preparation of SiC/BN nanocomposite powders by chemical processing. Mater. Lett. 58, 1419–1423 (2004)

  17. 17.

    Wang, X., Qiao, G., Jin, Z.: Fabrication of machinable silicon carbide-boron nitride ceramic nanocomposites. J. Am. Ceram. Soc. 87, 565–570 (2004)

  18. 18.

    Madhurambal, G., Mariappan, M., Mojumdar, S.C.: TG–DTA, UV and FTIR spectroscopic studies of urea-thiourea mixed crystal. J. Therm. Anal. Calorim. 100, 853–856 (2010)

  19. 19.

    Jones, J.M., Rollinson, A.N.: Thermogravimetric evolved gas analysis of urea and urea solutions with nickel alumina catalyst. Thermochim. Acta. 565, 39–45 (2013)

  20. 20.

    Chen, J.P., Isa, K.: Thermal decomposition of urea and urea derivatives by simultaneous TG/(DTA)/MS. J. Mass. Spectrom. Soc. Jpn. 46, 299–303 (1998)

  21. 21.

    Sevim, F., Demir, F., Bilen, M., Okur, H.: Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data. Korean J. Chem. Eng. 23, 736–740 (2006)

  22. 22.

    Gedikbey, T., Şarda, D., Birlik, E.: Uleksit ve tünellit mineralinden borik asit üretimi. IIUluslararasi Bor Sempozyumu. 291–296 (2004)

  23. 23.

    Condon, J.B., Holcombe, C.E., Johnson, D.H., Steckel, L.M.: The kinetics of the boron plus nitrogen reaction. Inorg. Chem. 15(9), 2173–2179 (1976)

  24. 24.

    Besisaa, D.H.A., Hagrasa, M.A.A., Ewaisa, E.M.M., Ahmeda, Y.M.Z., Zakia, Z.I., Ahmed, A.: Low temperature synthesis of nano-crystalline h-boron nitride from boric acid/urea precursors. J. Ceram. Process. Res. 17, 1219–1225 (2016)

  25. 25.

    Berchmans, L.J., Bharathi, B., Amalajyothi, K., Subramanian, K.: Synthesis of nanocrystalline boron nitride by combustion process. Int. J. Self-Propag. High-Temp. Synth. 18, 34–37 (2009)

  26. 26.

    Tehrani, F.S., Goh, B.T., Muhamad, M.R., Rahman, S.A.: Pressure dependent structural and optical properties of silicon carbide thin films deposited by hot wire chemical vapor deposition from pure silane and methane gases. J. Mater. Sci. Mater. Electron. 24, 1–8 (2012)

  27. 27.

    Saravanan, L., Subramanian, S., Vishu Kumar, A.B., Tharanathan, R.N.: Surface chemical studies on SiC suspension in the presence of chitosan. Ceram. Int. 32, 637–646 (2006)

  28. 28.

    Garbuz, V.V., Lobunets, T.F., Petrova, V.A., Tomila, T.V., Suvorova, L.S.: Physicochemical characterstics of nitrogen sorption on high-porous powders of graphene-like boron nitride powder. Metall. Met. Ceram. 55, 7–8 (2016)

  29. 29.

    Lopes, B.B., Rangel, R.C.C., Antonio, C.A., Durrant, S.F., Cruz, N.C., Rangel, E.C.: Mechanical and tribological properties of plasma deposited a-C:H:Si:O films, Nanoindentation in Materials Science, Chapter 8. J. Nemecek. 170–202 (2012)

  30. 30.

    Rashid, N.M.A., Ritikos, R., Goh, B.T., Gani, S.M.A., Muhamad, M.R., Rahman, S.A.: Effects of thermal annealing on the properties of highly reflective nc-Si:H/a-CNx:H multilayer films prepared by r. f. pecvd technique. Solid State Sci. Technol. 19, 132–137 (2011)

  31. 31.

    Bondareva A.V., Kovalskiia A.M., Firesteina K.L., Loginova B P.A., Sidorenkoa D.A., Shvindinaa N.V., Sukhorukovaa I.V., Shtanskya D.V.: Hollow spherical and nanosheet-base BN nanoparticles as perspective additives to oil lubricants: correlation between large-scale friction behavior and in situ TEM compression testing. Ceram. Int. 44, 6801–6809 (2018)

  32. 32.

    Kharazmi, A., Faraji, N., Hussin, R.M., Saion, E., Mat Yunus, W.M., Behzad, K.: Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach. J. Nanotechnol. 6, 529–536 (2015)

  33. 33.

    Fischer P.H.H., McDowell C.A: The infrared absorption spectra of urea-hydrocarbon. Can. J. Chem. 38, (1960)

  34. 34.

    Renuga Devı, T.S., Gayathrı, S.: FTIR and FT-Raman spectral analysıs of paclitaxel drugs. Int. J. Pharm. Sci. Rev. Res. 2, 106–110 (2010)

  35. 35.

    Burie, J.R., Boussac, A., Bodlais, C., Berger, C., Mattioli, T., Mioskowski, C., Nabedryk, E., Breton, J.: FTIR spectroscopy of uv-generated quinone radicals: evidence for an ıntramolecular hydrogen atom transfer in ubiquinone, naphthoquinone and plastoquinone. J. Phys. Chem. 99, 4059–4070 (1995)

  36. 36.

    Grdadolnik, J., Maréchal, Y.: Urea and urea–water solutions an infrared study. J. Mol. Struct. 615, 177–189 (2002)

  37. 37.

    Hernandez, M.T., Gonzalez, M.: Synthesis of resins as alpha-alumina precursors by the Pechini method using microwave and infrared heating. J. Eur. Ceram. Soc. 22, 2861–2868 (2002)

  38. 38.

    Oancea, A., Grasset, O., Le Menn, E., Bollengier, O., Bezacier, L., Le Mouélic, S., Tobie, G.: Laboratory infrared reflection spectrum of carbon dioxide clathrate hydrates for astrophysical remote sensing applications. Icarus. 221, 900–910 (2012)

  39. 39.

    Kodera, Y., Toyofuku, N., Yamasaki, H., Ohyanagi, M., Munir, Z.A.: Consolidation of SiC/BN composite through MA-SPS method. J. Mater. Sci. 43, 6422–6428 (2008)

  40. 40.

    Akyol, S., Toy, C., Gönül, T., Tekin, A.: Crystallization behavior and characterization of turbostratic boron nitride. J. Eur. Ceram. Soc. 17, 1415–1422 (1997)

  41. 41.

    Hagıo, T., Nonaka, K., Sato, T.: Microstructural development with crystallization of hexagonal boron nitride. J. Mater. Sci. Lett. 16, 795–798 (1997)

  42. 42.

    Thomas, J., Weston, N.E., O’Connor, T.E.: Turbostratic boron nitride, thermal transformation to ordered-layer-lattice boron nitride. J. Am. Chem. Soc. 84, 4619–4622 (1963)

  43. 43.

    Hubáček, M., Ueki, M., Sato, T., Brozek, V.: High-temperature behaviour of hexagonal boron nitride. Thermochim. Acta. 282/283, 359–367 (1996)

  44. 44.

    Brožek, V., Hubáček, M.: A contribution to the crystallochemistry of boron nitride. J. Solid State Chem. 100, 120–129 (1992)

  45. 45.

    Garbuz, V.V., Petrova, V.A., Suvorova, L.S., Silinska, T.A., Kuzmenko, L.M.: Model of reactions for the synthesis of turbostratic boron nitride nanoparticles from urea. Powder Metall. Met. Ceram. 56, 7–8 (2017)

  46. 46.

    Shuba, R., Chen, I.-W.: Machinable α-SiAlON/BN composites. J. Am. Ceram. Soc. 89, 2147–2153 (2006)

  47. 47.

    Motealleh, A., Ortiz, A.L., Borrero-López, O., Guiberteau, F.: Effect of hexagonal-BN additions on the sliding-wear resistance offine-grained alpha-SiC densified with Y3Al5O12 liquid phase by spark-plasma sintering. J. Eur. Ceram. Soc. 34, 565–574 (2014)

  48. 48.

     Abderrazak, H., Hadj Hmida, E.S.B.: Silicon carbide: synthesis and properties. R. Gerhardt. Properties and Applications of Silicon Carbide. Tunisia: InTech, 3, 201161–388 (n.d.)

  49. 49.

    Omori, M., Takei, H.: Pressureless sintering of SiC. J. Am. Ceram. Soc. 65, 92 (1982)

  50. 50.

    She, J.H., Ueno, K.: Effect of additive content on liquid-phase sinterıng on silicon carbide ceramics. Mater. Res. Bull. 34, 1629–1636 (1999)

  51. 51.

    Luoa, X., Goel, S., Reuben, R.L.: A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide, s.l. J. Eur. Ceram. Soc. 32, 3423–3434 (2012)

  52. 52.

    Kumar, V.: Synthesis and study of photoluminescence properties of nanostructured boron nitride, pp. 44–50. Jadavpur University, India (2011)

  53. 53.

    Lorrette, C., Réau, A., Briottet, L.: Mechanical properties of nanostructured silicon carbide consolidated by spark plasma sintering. J. Eur. Ceram. Soc. 33, 147–156 (2013)

  54. 54.

    Maıtre, A., Vande Put, A., Laval, J.P., Valette, S., Trolliard, G.: Role of boron on the spark plasma sintering of an alfa-SiC powder. J. Eur. Ceram. Soc. 28, 1881–1890 (2008)

  55. 55.

    Stobierski, L., Gubernat, A.: Sintering of silicon carbide II. Effect of boron. Ceram. Int. 29, 355–361 (2003)

  56. 56.

    Lu, B., Zhang, Y.: Densification behavior and microstructure evolution of hot-pressed SiC–SiBCN ceramics. Ceram. Int. 4, 8541–8551 (2015)

  57. 57.

    Yang, Z.H., Jia, D.C., Zhou, Y., Shi, P.Y., Song, C.B., Lin, L.: Oxidation resistance of hot-pressed SiC–BN composites. s.l. Ceram. Int. 34, 317–321 (2008)

Download references

Author information

Correspondence to Zuhal Yılmaz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, Z., Ay, N. Production parameters affecting the synthesis and properties of hBN-SiC composites. J Aust Ceram Soc (2020). https://doi.org/10.1007/s41779-019-00398-4

Download citation

Keywords

  • hBN
  • SiC
  • Composites
  • Calcination
  • Physical properties