Advertisement

Electrophoretic deposition of bi-layered nano-sized silicon carbide/mullite coating from stabilized suspensions

  • Mohammad Jafarpour
  • Hossein AghajaniEmail author
Research
  • 12 Downloads

Abstract

Nano-sized silicon carbide/mullite bi-layered film was applied onto the surface of graphite using electrophoretic deposition (EPD) method from stabilized suspensions. The suspensions were prepared adding 5 g L−1 SiC and 10 g L−1 mullite in ethanol. The effects of adding various amounts of polyethylene imine (PEI) on the stability of suspensions were investigated by visual inspection (sedimentation height), measuring the zeta potential, and particle size distribution. As a result, the addition of 6.0 dwb% and 1.5 dwb% PEI to SiC and mullite suspensions were found to be an effective way in dispersing of nanoparticles. The zeta potential values of well-stabilized suspensions were determined 37.6 mV and 42.4 mV for SiC and mullite suspensions, respectively. Therefore, the coating processes were conducted with the optimal amounts of PEI. In the deposition process, the optimal distance between electrodes was determined 10 mm. In order to investigate the coating process parameters, the optical microscopy (OM) was used for single-layer coatings. The results reveal that applied voltages of 40 V and 10 V with deposition periods of 50 s and 60 s bring about uniform coatings. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were carried out to evaluate the microstructure. The thicknesses of green coatings were measured about 24.15 μm for SiC layer and 7.23 μm for the mullite layer.

Keywords

Electrophoretic deposition SiC Mullite Bi-layered coating Suspension stability 

Notes

Acknowledgments

The authors would gratefully like to acknowledge the Central Laboratory at the University of Tabriz which provided the valuable facilities to carry out this research.

References

  1. 1.
    Dor, S., Rühle, S., Ofir, A., Adler, M., Grinis, L., Zaban, A.: The influence of suspension composition and deposition mode on the electrophoretic deposition of TiO2 nanoparticle agglomerates. Colloids Surf. A Physicochem. Eng. Asp. 342, 70–75 (2009)CrossRefGoogle Scholar
  2. 2.
    Chávez-Valdez, A., Herrmann, M., Boccaccini, A.R.: Alternating current electrophoretic deposition (EPD) of TiO2 nanoparticles in aqueous suspensions. J. Colloid Interface Sci. 375, 102–105 (2012)CrossRefGoogle Scholar
  3. 3.
    Choy, K.L.: Chemical vapour deposition of coatings. Prog. Mater. Sci. 48, 57–170 (2003)CrossRefGoogle Scholar
  4. 4.
    Qiang, X., Li, H., Zhang, Y., Fu, Q., Wei, J., Tian, S.: A modified dual-layer SiC oxidation protective coating for carbon/carbon composites prepared by one-step pack cementation. Corros. Sci. 53, 523–527 (2011)CrossRefGoogle Scholar
  5. 5.
    Zhao, J., Wang, G., Guo, Q., Liu, L.: Microstructure and property of SiC coating for carbon materials. Fusion Eng. Design. 82, 363–368 (2007)CrossRefGoogle Scholar
  6. 6.
    Farrokhi-Rad, M., Shahrabi, T.: Effect of triethanolamine on the electrophoretic deposition of hydroxyapatite nanoparticles in isopropanol. Ceram. Int. 39, 7007–7013 (2013)CrossRefGoogle Scholar
  7. 7.
    Boccaccini, A.R., Schindler, U., Krüger, H.G.: Ceramic coatings on carbon and metallic fibers by electrophoretic deposition. Mater. Lett. 51, 225–230 (2001)CrossRefGoogle Scholar
  8. 8.
    Lu, T., Pan, L., Li, H., Nie, C., Zhu, M., Sun, Z.: Reduced graphene oxide–carbon nanotubes composite films by electrophoretic deposition method for supercapacitors. J. Electroanal. Chem. 661, 270–273 (2011)CrossRefGoogle Scholar
  9. 9.
    Lebrette, S., Pagnoux, C., Abelard, P.: Fabrication of titania dense layers by electrophoretic deposition in aqueous media. J. Eur. Ceram. Soc. 26, 2727–2734 (2006)CrossRefGoogle Scholar
  10. 10.
    Sun, Y., Wang, Y., Zhitomirsky, I.: Dispersing agents for electrophoretic deposition of TiO2 and TiO2–carbon nanotube composites. Colloids Surf. A Physicochem. Eng. Asp. 418, 131–138 (2013)CrossRefGoogle Scholar
  11. 11.
    Iveković, A., Novak, S., Lukek, M., Kalin, M.: Aqueous electrophoretic deposition of bulk polyether ether ketone (PEEK). J. Mater. Process. Technol. 223, 58–64 (2015)CrossRefGoogle Scholar
  12. 12.
    Hanaor, D., Michelazzi, M., Leonelli, C., Sorrell, C.C.: The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J. Eur. Ceram. Soc. 32, 235–244 (2012)CrossRefGoogle Scholar
  13. 13.
    Besra, L., Liu, M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1–61 (2007)CrossRefGoogle Scholar
  14. 14.
    Hyam, R.S., Subhedar, K.M., Pawar, S.H.: Suspension stability studies for the electrophoretic deposition of boron films. Colloids Surf. A Physicochem. Eng. Asp. 297, 172–178 (2007)CrossRefGoogle Scholar
  15. 15.
    Harbach, F., Nienburg, H.: Homogeneous functional ceramic components through electrophoretic deposition from stable colloidal suspensions—I. Basic concepts and application to zirconia. J. Eur. Ceram. Soc. 18, 675–683 (1998)CrossRefGoogle Scholar
  16. 16.
    Wang, Y., Xu, Z.: Nanostructured Ni–WC–Co composite coatings fabricated by electrophoretic deposition. Surf. Coat. Technol. 200, 3896–3902 (2006)CrossRefGoogle Scholar
  17. 17.
    Jun, B.S., Joo, H.K.: Suspension stability of Pb(Zr0.58TiO0.42)O3 nano-particles during electrophoretic deposition. J. Phys. Chem. Solids. 69, 1330–1333 (2008)CrossRefGoogle Scholar
  18. 18.
    Farrokhi-Rad, M.: Electrophoretic deposition of hydroxyapatite nanoparticles in different alcohols: effect of Tris (tris (hydroxymethyl) aminomethane) as a dispersant. Ceram. Int. 42, 3361–3371 (2016)CrossRefGoogle Scholar
  19. 19.
    Tang, F., Uchikoshi, T., Ozawa, K., Sakka, Y.: Effect of polyethylenimine on the dispersion and electrophoretic deposition of nano-sized titania aqueous suspensions. J. Eur. Ceram. Soc. 26, 1555–1560 (2006)CrossRefGoogle Scholar
  20. 20.
    Bouyer, F., Foissy, A.: Electrophoretic deposition of silicon carbide. J. Am. Ceram. Soc. 82, 2001–2010 (1999)CrossRefGoogle Scholar
  21. 21.
    Wang, K.T., Cao, L.Y., Huang, J.F., Fei, J.: A mullite/SiC oxidation protective coating for carbon/carbon composites. J. Eur. Ceram. Soc. 33, 191–198 (2013)CrossRefGoogle Scholar
  22. 22.
    Shakeri, M.S., Alizadeh, M., Kazemzadeh, A., Ebadzadeh, T., Aghajani, H.: Electrophoretic kinetics of nanomullite, nanoSiC and their composite suspensions. Micro Nano Lett. 13, 184–189 (2018)CrossRefGoogle Scholar
  23. 23.
    Zhang, X., Hou, Y., Hu, P., Han, W., Luo, J.: Dispersion and co-dispersion of ZrB2 and SiC nanopowders in ethanol. Ceram. Int. 38, 2733–2741 (2012)CrossRefGoogle Scholar
  24. 24.
    Cihlar, J., Drdlik, D., Cihlarova, Z., Hadraba, H.: Effect of acids and bases on electrophoretic deposition of alumina and zirconia particles in 2-propanol. J. Eur. Ceram. Soc. 33, 1885–1892 (2013)CrossRefGoogle Scholar
  25. 25.
    He, R., Hu, P., Zhang, X., Han, W., Wei, C., Hou, Y.: Preparation of high solid loading, low viscosity ZrB2–SiC aqueous suspensions using PEI as dispersant. Ceram. Int. 39, 2267–2274 (2013)CrossRefGoogle Scholar
  26. 26.
    Argirusis, C., Damjanović, T., Borchardt, G.: Yttrium silicate coating system for oxidation protection of C/C–Si–SiC composites: electrophoretic deposition and oxygen self-diffusion measurements. J. Eur. Ceram. Soc. 27, 1303–1306 (2007)CrossRefGoogle Scholar
  27. 27.
    Xu, H., Shapiro, I.P., Xiao, P.: The influence of pH on particle packing in YSZ coatings electrophoretically deposited from a non-aqueous suspension. J. Eur. Ceram. Soc. 30, 1105–1114 (2010)CrossRefGoogle Scholar
  28. 28.
    Ma, C., Li, H., Wu, H., Fu, Q., Sun, C., Shi, X., Zhang, Y., Zhang, Z., Tao, J., Han, Z.: Mullite oxidation resistant coating for SiC-coated carbon/carbon composites by supersonic plasma spraying. J. Mater. Sci. Technol. 29, 29–33 (2013)CrossRefGoogle Scholar
  29. 29.
    Jian-Feng, H., Xie-Rong, Z., He-Jun, L., Xin-Bo, X., Min, H.: Mullite-Al2O3-SiC oxidation protective coating for carbon/carbon composites. Carbon. 41, 2825–2829 (2003)CrossRefGoogle Scholar
  30. 30.
    Lu, G., Qiao, S., Zhang, C., Hou, J., Jia, D., Zhang, Y.: Oxidation protection of C/Si–C–N composite by a mullite interphase. Compos. A: Appl. Sci. Manuf. 39, 1467–1470 (2008)CrossRefGoogle Scholar
  31. 31.
    Damjanović, T., Argirusis, C., Borchardt, G., Leipner, H., Herbig, R., Tomandl, G., Weiss, R.: Oxidation protection of C/C–SiC composites by an electrophoretically deposited mullite precursor. J. Eur. Ceram. Soc. 25, 577–587 (2005)CrossRefGoogle Scholar
  32. 32.
    Ahmadi, M., Aghajani, H.: Suspension characterization and electrophoretic deposition of yttria-stabilized Zirconia nanoparticles on an iron-nickel based superalloy. Ceram. Int. 43, 7321–7328 (2017)CrossRefGoogle Scholar
  33. 33.
    Autier, C., Azéma, N., Boustingorry, P.: Using settling behaviour to study mesostructural organization of cement pastes and superplasticizer efficiency. Colloids Surf. A Physicochem. Eng. Asp. 450, 36–45 (2014)CrossRefGoogle Scholar
  34. 34.
    Talero, R., Pedrajas, C., Rahhal, V.: Performance of fresh Portland cement pastes–determination of some specific rheological parameters. In Rheology-New concepts, applications and methods. IntechOpen (2013).  https://doi.org/10.5772/53761
  35. 35.
    Jafarpour, M., Aghajani, H., Golshani Ajabshir, A.: Stability and electrophoretic deposition of nano-SiC assisted by PEI. Journal of Dispersion Scienceand Technology (2019).  https://doi.org/10.1080/01932691.2018.1535978
  36. 36.
    Sullivan, K.T., Worsley, M.A., Kuntz, J.D., Gash, A.E.: Electrophoretic deposition of binary energetic composites. Combust. Flame. 159, 2210–2218 (2012)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringUniversity of TabrizTabrizIran

Personalised recommendations