Advertisement

Surface roughness improvement of near net shaped alumina by EPD

  • Daniel DrdlikEmail author
  • Zdenek Chlup
  • Hynek Hadraba
  • Katarina Drdlikova
Research
  • 4 Downloads

Abstract

The high surface roughness of thick and dense alumina deposits prepared by long-term electrophoretic deposition (EPD) caused by surface inhomogeneities could be eliminated by changing the suspension composition or EPD parameters. This work is aimed at the influence of the suspension composition, more precisely on the increase of electrical conductivity through indifferent electrolyte (lithium chloride) addition and its effect on the surface roughness. At first, the electrical conductivity was adjusted by the various amounts of the stabilisers of mono-, di- and trichloroacetic acid in the range of 0.85–21.25 wt%. It was demonstrated that deposits prepared from these suspensions were several millimetres thick, dense with a relatively low surface roughness (Ra ≈ 10 μm) only when the electrical conductivity was higher than 4 μS/cm. If a portion of the stabiliser was replaced with indifferent electrolyte, it resulted in the significantly smoother surface with a roughness Ra ≈ 2 μm preserving all other benefits. Suggested optimization represents a useful novel approach for the preparation of dense, thick and near net-shaped alumina deposits with low surface roughness via EPD.

Keywords

Alumina Electrophoretic deposition Electrical conductivity Surface roughness Thick layer 

Notes

Funding information

The authors acknowledge the support of the Grant Agency of the Czech Republic under grant no. 17-08153S. This research was also carried out under the project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability Programme II.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sarkar, P., Nicholson, P.S.: Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J. Am. Ceram. Soc. 79(8), 1987–2002 (1996).  https://doi.org/10.1111/j.1151-2916.1996.tb08929.x CrossRefGoogle Scholar
  2. 2.
    Besra, L., Uchikoshi, T., Suzuki, T.S., Sakka, Y.: Application of constant current pulse to suppress bubble incorporation and control deposit morphology during aqueous electrophoretic deposition (EPD). J. Eur. Ceram. Soc. 29(10), 1837–1845 (2009).  https://doi.org/10.1016/j.jeurceramsoc.2008.07.031 CrossRefGoogle Scholar
  3. 3.
    Tahmasbi Rad, A., Solati-Hashjin, M., Osman, N.A.A., Faghihi, S.: Improved bio-physical performance of hydroxyapatite coatings obtained by electrophoretic deposition at dynamic voltage. Ceram. Int. 40(8, Part B), 12681–12691 (2014).  https://doi.org/10.1016/j.ceramint.2014.04.116 CrossRefGoogle Scholar
  4. 4.
    Besra, L., Liu, M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52(1), 1–61 (2007).  https://doi.org/10.1016/j.pmatsci.2006.07.001 CrossRefGoogle Scholar
  5. 5.
    Diba, M., Fam, D.W.H., Boccaccini, A.R., Shaffer, M.S.P.: Electrophoretic deposition of graphene-related materials: a review of the fundamentals. Prog. Mater. Sci. 82, 83–117 (2016).  https://doi.org/10.1016/j.pmatsci.2016.03.002 CrossRefGoogle Scholar
  6. 6.
    Ferrari, B., Moreno, R.: Electrophoretic deposition of aqueous alumina slips. J. Eur. Ceram. Soc. 17(4), 549–556 (1997).  https://doi.org/10.1016/S0955-2219(96)00113-6 CrossRefGoogle Scholar
  7. 7.
    Milani, M., Zahraee, S.M., Mirkazemi, S.M.: Influence of electrophoretic deposition parameters on pore size distribution of doped nano alumina plates. Ceramics-Silikáty. 60(4), 299–307 (2016).  https://doi.org/10.13168/cs.2016.0045 Google Scholar
  8. 8.
    Hasanpoor, M., Aliofkhazraei, M., Delavari, H.,.H.: In-situ study of mass and current density for electrophoretic deposition of zinc oxide nanoparticles. Ceram. Int. 42(6), 6906–6913 (2016).  https://doi.org/10.1016/j.ceramint.2016.01.076
  9. 9.
    Javidi, M., Javadpour, S., Bahrololoom, M.E., Ma, J.: Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel. Mater. Sci. Eng. C. 28(8), 1509–1515 (2008).  https://doi.org/10.1016/j.msec.2008.04.003 CrossRefGoogle Scholar
  10. 10.
    Meng, X., Kwon, T.Y., Yang, Y., Ong Joo, L., Kim, K.H.: Effects of applied voltages on hydroxyapatite coating of titanium by electrophoretic deposition. J Biomed Mater Res B Appl Biomater. 78B(2), 373–377 (2006).  https://doi.org/10.1002/jbm.b.30497 CrossRefGoogle Scholar
  11. 11.
    Hadraba, H., Chlup, Z., Drdlik, D., Cihlar, J.: Micro-fibres containing composites prepared by EPD. J. Eur. Ceram. Soc. 36(2), 365–371 (2016).  https://doi.org/10.1016/j.jeurceramsoc.2015.07.031 CrossRefGoogle Scholar
  12. 12.
    Maca, K., Pouchly, V., Drdlik, D., Hadraba, H., Chlup, Z.: Dilatometric study of anisotropic sintering of alumina/zirconia laminates with controlled fracture behaviour. J. Eur. Ceram. Soc. 37(14), 4287–4295 (2017).  https://doi.org/10.1016/j.jeurceramsoc.2017.04.030 CrossRefGoogle Scholar
  13. 13.
    Hung, C.-W., Chang, C.-H., Chen, W.-C., Chen, C.-C., Chen, H.-I., Tsai, Y.-T., Tsai, J.-H., Liu, W.-C.: A Pt/AlGaN/GaN heterostructure field-effect transistor (HFET) prepared by an electrophoretic deposition (EPD)-gate approach. Solid State Electron. 124, 5–9 (2016).  https://doi.org/10.1016/j.sse.2016.06.011 CrossRefGoogle Scholar
  14. 14.
    Keller, F., Nirschl, H., Dörfler, W., Woldt, E.: Efficient numerical simulation and optimization in electrophoretic deposition processes. J. Eur. Ceram. Soc. 35(9), 2619–2630 (2015).  https://doi.org/10.1016/j.jeurceramsoc.2015.02.031 CrossRefGoogle Scholar
  15. 15.
    Michaud, X., Shi, K., Zhitomirsky, I.: Electrophoretic deposition of LiFePO4 for Li-ion batteries. Mater. Lett. 241, 10–13 (2019).  https://doi.org/10.1016/j.matlet.2019.01.032 CrossRefGoogle Scholar
  16. 16.
    Esfahani, S.L., Rouhani, S., Ranjbar, Z.: Optimization the electrophoretic deposition fabrication of graphene-based electrode to consider electro-optical applications. Surf. Interfaces. 9, 218–227 (2017).  https://doi.org/10.1016/j.surfin.2017.10.001 CrossRefGoogle Scholar
  17. 17.
    Song, G., Xu, G., Quan, Y., Yuan, Q., Davies, P.A.: Uniform design for the optimization of Al2O3 nanofilms produced by electrophoretic deposition. Surf. Coat. Technol. 286, 268–278 (2016).  https://doi.org/10.1016/j.surfcoat.2015.12.039 CrossRefGoogle Scholar
  18. 18.
    Drdlik, D., Moravek, T., Rahel, J., Stupavska, M., Cihlar, J., Drdlikova, K., Maca, K.: Electrophoretic deposition of plasma activated sub-micron alumina powder. Ceram. Int. 44(8), 9787–9793 (2018).  https://doi.org/10.1016/j.ceramint.2018.02.215 CrossRefGoogle Scholar
  19. 19.
    Ervina, J., Ghaleb, Z.A., Hamdan, S., Mariatti, M.: Colloidal stability of water-based carbon nanotube suspensions in electrophoretic deposition process: effect of applied voltage and deposition time. Compos. A: Appl. Sci. Manuf. 117, 1–10 (2019).  https://doi.org/10.1016/j.compositesa.2018.11.002 CrossRefGoogle Scholar
  20. 20.
    Ferrari, B., Moreno, R.: The conductivity of aqueous Al2O3 slips for electrophoretic deposition. Mater. Lett. 28(4), 353–355 (1996).  https://doi.org/10.1016/0167-577X(96)00075-4 CrossRefGoogle Scholar
  21. 21.
    Lefrou, C., Fabry, P., Poignet, J.C.: Electrochemistry: the Basics, with Examples. Springer, Berlin Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Cruz, R.C.D., Reinshagen, J., Oberacker, R., Segadães, A.M., Hoffmann, M.J.: Electrical conductivity and stability of concentrated aqueous alumina suspensions. J. Colloid Interface Sci. 286(2), 579–588 (2005).  https://doi.org/10.1016/j.jcis.2005.02.025 CrossRefGoogle Scholar
  23. 23.
    Liu, X., Maki-Arvela, P., Aho, A., Vajglova, Z., Gun’ko, V.M., Heinmaa, I., Kumar, N., Eranen, K., Salmi, T., Murzin, D.Y.: Zeta potential of beta zeolites: influence of structure, acidity, pH, temperature and concentration. Molecules (Basel, Switzerland). 23(4), (2018).  https://doi.org/10.3390/molecules23040946
  24. 24.
    Krüger, H.G., Knote, A., Schindler, U., Kern, H., Boccaccini, A.R.: Composite ceramic-metal coatings by means of combined electrophoretic deposition and galvanic methods. J. Mater. Sci. 39(3), 839–844 (2004).  https://doi.org/10.1023/B:JMSC.0000012912.96350.d2 CrossRefGoogle Scholar
  25. 25.
    Cihlar, J., Drdlik, D., Cihlarova, Z., Hadraba, H.: Effect of acids and bases on electrophoretic deposition of alumina and zirconia particles in 2-propanol. J. Eur. Ceram. Soc. 33(10), 1885–1892 (2013).  https://doi.org/10.1016/j.jeurceramsoc.2013.02.017 CrossRefGoogle Scholar
  26. 26.
    Safarík, L., Stránský, Z.: Titrimetric Analysis in Organic Solvents. Elsevier, Amsterdam (1986)Google Scholar
  27. 27.
    Izutsu, K.: Electrochemistry in Nonaqueous Solutions. Wiley, (2009)Google Scholar
  28. 28.
    Ji, C., Lan, W., Xiao, P.: Fabrication of yttria-stabilized zirconia coatings using electrophoretic deposition: packing mechanism during deposition. J. Am. Ceram. Soc. 91(4), 1102–1109 (2008).  https://doi.org/10.1111/j.1551-2916.2008.02261.x CrossRefGoogle Scholar
  29. 29.
    Guo, F., Shapiro, I.P., Xiao, P.: Effect of HCl on electrophoretic deposition of yttria stabilized zirconia particles in organic solvents. J. Eur. Ceram. Soc. 31(14), 2505–2511 (2011).  https://doi.org/10.1016/j.jeurceramsoc.2011.02.027 CrossRefGoogle Scholar
  30. 30.
    Anné, G., Vanmeensel, K., Neirinck, B., Van der Biest, O., Vleugels, J.: Ketone-amine based suspensions for electrophoretic deposition of Al2O3 and ZrO2. J. Eur. Ceram. Soc. 26(16), 3531–3537 (2006).  https://doi.org/10.1016/j.jeurceramsoc.2006.01.019 CrossRefGoogle Scholar
  31. 31.
    Hirata, Y., Nishimoto, A., Ishihara, Y.: Forming of alumina powder by electrophoretic deposition. J. Ceram. Soc. Jpn. International ed. 99(2), 105–109 (1991)Google Scholar
  32. 32.
    Kreethawate, L., Larpkiattaworn, S., Jiemsirilers, S., Besra, L., Uchikoshi, T.: Application of electrophoretic deposition for inner surface coating of porous ceramic tubes. Surf. Coat. Technol. 205(7), 1922–1928 (2010).  https://doi.org/10.1016/j.surfcoat.2010.08.069 CrossRefGoogle Scholar
  33. 33.
    Basu, R.N., Randall, C.A., Mayo, M.J.: Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition. J. Am. Ceram. Soc. 84(1), 33–40 (2001).  https://doi.org/10.1111/j.1151-2916.2001.tb00604.x CrossRefGoogle Scholar
  34. 34.
    Hamaker, H.C., Verwey, E.J.W.: The role of the forces between the particles in electrodeposition and other phenomena. Trans. Faraday Soc. 36, 180–185 (1940)CrossRefGoogle Scholar
  35. 35.
    Zhitomirsky, I., Gal-Or, L.: Electrophoretic deposition of hydroxyapatite. J. Mater. Sci. Mater. Med. 8(4), 213–219 (1997)CrossRefGoogle Scholar
  36. 36.
    Trau, M., Seville, D.A., Aksay, I.A.: Field-induced layering of colloidal crystals. Science. 272(5262), 706–709 (1996)CrossRefGoogle Scholar
  37. 37.
    Meyers, D.: Surfaces, Interfaces, and Colloids, vol. 2. Wiley-VCH, New York (1999)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.CEITEC BUT, Brno University of TechnologyBrnoCzech Republic
  2. 2.Institute of Materials Science and EngineeringBrno University of TechnologyBrnoCzech Republic
  3. 3.CEITEC IPM, Institute of Physics of MaterialsAcademy of Sciences of the Czech RepublicBrnoCzech Republic

Personalised recommendations