Advertisement

Structure and morphology of synthesized lanthanum hydroxide [La(OH)3] nanocrystalline powders: study on fuel to oxidant ratio

  • V. Anslin FerbyEmail author
  • A. Moses Ezhil Raj
  • M. Bououdina
Research
  • 3 Downloads

Abstract

An efficient process based on a solution combustion technique has been developed to produce high crystalline and nanometer-sized particles of lanthanum hydroxide [La(OH)3] using metal nitrate [La(NO3)3.6H2O] as oxidant and citric acid [C6H8O7] as fuel. Three fuel/oxidant ratios were chosen to study the effect of the fuel content on the phase formation and powder properties. X-ray diffraction analysis reveals the hexagonal phase [space group: P63/m (176)] of La(OH)3 (JCPDS no. 36-1481) without any additional impurity peaks. Since F/O ratio has significant control over flame temperature and the amount of gas release, the prepared La(OH)3 has F/O-dependent properties variation. SEM images of the prepared samples have different morphologies due to the change in the flame temperature, which in turn releases a lot of gases. The Raman spectral bands at 225, 278, 334, and 445 cm−1 and a weak broader peak 593 cm−1 confirmed the phase formation as reported for crystalline La(OH)3. The room-temperature photoluminescence spectra of La(OH)3 for the excitation at λex = 325 nm exhibit emission bands at 417 and 493 cm−1 corresponding to the typical blue band of La3+ ions. The recorded EDAX spectra indicate only the presence of La and O elements. It is observed that the sample prepared for F/O = 1.0 is almost stoichiometry than the other two samples, fuel lean and fuel rich. TEM images show typical degree of agglomeration and polydisperse with uniform size distribution. The dielectric constant of La(OH)3 has higher value (401) in the lower-frequency (100 Hz) than the value (54) measured at higher frequency (1 kHz). The fuel-to-oxidant ratio and temperature have been found to significantly effect the dielectric constant of La(OH)3. The physicochemical properties of [La(OH)3] nanoparticles are valuable for developing La-based applications such as catalysts and phosphors.

Keywords

Combustion synthesis Nanopowders X-ray diffraction Raman spectroscopy Photoluminescence Transmission electron microscopy 

Notes

References

  1. 1.
    Shek, C.H., Lai, J.K.L., Gu, T.S., Lin, G.M.: Transformation evolution and infrared absorption spectra of amorphous and crystalline nano - Al2O3 powders. Nanostruct. Mater. 8, 605–610 (1997)CrossRefGoogle Scholar
  2. 2.
    Janbey, A., Pati, R.K., Tahir, S., Pramanik, P.: A new chemical route for the synthesis of nano-crystalline α-Al2O3 powder. J. Eur. Ceram. Soc. 21, 2285–2289 (2001)CrossRefGoogle Scholar
  3. 3.
    Pathak, L.C., Singh, T.B., Das, S., Verma, A.K., Ramachandrarao, P.: Effect of pH on the combustion synthesis of nanocrystalline alumina powder. Mater. Lett. 57, 380–385 (2002)CrossRefGoogle Scholar
  4. 4.
    Kingsley, J.J., Patil, K.C.: A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater. Lett. 6, 427–432 (1988)CrossRefGoogle Scholar
  5. 5.
    Kiminami, R.H.G.A., Morelli, M.R., Folz, D.C., Clark, D.E.: Microwave synthesis of alumina powders. Am. Cream. Soc. Bull. 79, 63–67 (2000)Google Scholar
  6. 6.
    Wu, Y.Q., Zhang, Y.F., Huang, X.X., Guo, J.K.: Preparation of platelike nano alpha alumina particles. Cream. Int. 27, 265–268 (2001)CrossRefGoogle Scholar
  7. 7.
    Karasev, V.V., Onishchuk, A.A., Glotov, O.G., Baklanov, A.M., Zarko, V.E., Panfilov, V.N.: Charges and fractal properties of nanoparticles—combustion products of aluminium agglomerates. Combust. Explos. ShockWave. 37, 734–736 (2001)CrossRefGoogle Scholar
  8. 8.
    Fang, X.S., Zhang, L.: One-dimensional (1D) ZnS nanomaterials and nanostructures. J. Mater. Sci. Technol. 22, 721–736 (2006)Google Scholar
  9. 9.
    Fang, X.S., Ye, C.H., Zhang, L.D., Wang, Y.H., Wu, Y.C.: Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv. Funct. Mater. 15, 63–68 (2005)CrossRefGoogle Scholar
  10. 10.
    Wu, Q.Z., Shen, Y., Liao, J.F., Li, Y.G.: Synthesis and characterization of three-dimensionally ordered macroporous rare earth oxides. Mater. Lett. 58, 2688–2691 (2004)CrossRefGoogle Scholar
  11. 11.
    Li, S.L., Zhang, S.X., Hu, H., Zhang, Y.H.: The thermal transformation from lanthanum hydroxide to lanthanum hydroxide oxide. J. Catal. 25, 762 (2004)Google Scholar
  12. 12.
    Zhu, J.L., Zhou, Y.H., Yang, H.X.: Effects of lanthanum and neodymium hydroxides on secondary alkaline zinc electrode. J. Power Sources. 69, 169–173 (1997)CrossRefGoogle Scholar
  13. 13.
    Rosynek, M.P., Magnuson, D.T.: Preparation and characterization of catalytic lanthanum oxide. J. Catal. 46, 402–413 (1977)CrossRefGoogle Scholar
  14. 14.
    Veena Gopalan, E., Joy, P.A., Al-Omaric, I.A., Sakthi Kumar, D., Yoshida, Y., Anantharaman, M.R.: On the structural, magnetic and electrical properties of sol-gel derived nanosized cobalt ferrite. J. Alloy Compd. 485, 711–717 (2009)CrossRefGoogle Scholar
  15. 15.
    Salavati-Niasari, M., Khansari, A., Davar, F.: Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process. Inorganica Chim. Acta. 362, 4937–4942 (2009)CrossRefGoogle Scholar
  16. 16.
    Jeyadevan, B., Perales-Perez, O., Shinoda, K.: Magnetics. IEEE Transac. 38, 234 (2002)Google Scholar
  17. 17.
    Zhao, L., Zhang, H., Xing, Y., Song, S., Yu, S., Shi, W., Guo, X., Yang, J., Lei, Y., Cao, F.: Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem. 181, 245–252 (2008)CrossRefGoogle Scholar
  18. 18.
    Shi, M., Liu, N., Xu, Y., Yuan, Y., Majewski, P., Aldinger, F.: Synthesis and characterization of Sr- and Mg- doped LaGaO3 by using glycine-nitrate combustion method. J. Alloy Compd. 425, 348–352 (2006)CrossRefGoogle Scholar
  19. 19.
    Toksha, B.G., Shirsath, S.E., Patange, S.M., Jadhav, K.M.: Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol-gel auto combustion method. Solid State Commun. 147, 479–483 (2008)CrossRefGoogle Scholar
  20. 20.
    Jain, S.R., Adiga, K.C., Pai Verneker, V.R.: A new approach to thermo-chemical calculations of condensed fuel–oxidizer mixtures. Combust. Flame. 40, 71–79 (1981)CrossRefGoogle Scholar
  21. 21.
    Marinsek, M., Zupan, K., Maeek, J.: Ni-YSZ cermet anodes prepared by citrate/nitrate combustion synthesis. J. Power Sources. 106, 178–188 (2002)CrossRefGoogle Scholar
  22. 22.
    Chakroborty, A., Das Sharma, A., Maiti, B., Maiti, H.S.: Preparation of low-temperature sinterable BaCe0.8Sm0.2O3 powder by autoignition technique. Mater. Lett. 57, 862–867 (2002)CrossRefGoogle Scholar
  23. 23.
    Mali, A., Ataie, A.: Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexa ferrite particles prepared by sol–gel combustion method. Ceram. Int. 30, 1979–1983 (2004)CrossRefGoogle Scholar
  24. 24.
    Kuznetsov, M.V., Parkin, I.P., Caruana, D.J., Morozov, Y.G.: Combustion synthesis of alkaline-earth substituted lanthanum manganites LaMnO3, La0.6Ca0.4MnO3 and La0.6Sr0.4MnO3. J. Mater. Chem. 14, 1377–1382 (2004)CrossRefGoogle Scholar
  25. 25.
    Patil, C.K., Aruna, S.T., Mimani, T.: Combustion synthesis: an update. Curr. Opin Solid State Mater. Sci. 6, 507–512 (2002)CrossRefGoogle Scholar
  26. 26.
    Berger, D., Matei, C.: Synthesis of lanthanum based perovskite nano materials obtained by combustion method. Rev. Roum. Chim. 50, 889–894 (2005)Google Scholar
  27. 27.
    Deshpande, K., Mukasyan, A.S., Varma, A.: Aqueous combustion synthesis of strontium-doped lanthanum chromite ceramics. J. Am. Ceram. Soc. 86, 1149–1154 (2003)CrossRefGoogle Scholar
  28. 28.
    Khandekar, M.S., Kambale, R.C., Latthe, S.S., Patil, J.Y., Shaikh, P.A., Hur, N., Suryavanshi, S.S.: Role of fuels on intrinsic and extrinsic properties of CoFe2O4 synthesized by combustion method. Mat. Lett. 65, 2972–2974 (2011)CrossRefGoogle Scholar
  29. 29.
    Qiting, L.I., Jiansen, N.I., Yiqing, W.U., Yanan, D.U., Weizhong, D., Shuhua, G.: Synthesis and characterization of La(OH)3 nanopowders from hydrolysis of lanthanum carbide. J. Rare Earths. 29, 416–419 (2011)CrossRefGoogle Scholar
  30. 30.
    Salavati-Niasari, M., Mir, N., Davar, F.: ZnO nanotriangles: Synthesis, characterization and optical properties. J. Alloy Compd. 476, 908–912 (2009)CrossRefGoogle Scholar
  31. 31.
    Mazloumi, M., Shahcheraghi, N., Kajbafvala, A., Zanganeh, S., Lak, A., Mohajerani, M.S., Sadrnezhaad, S.K.: 3D bundles of self-assembled lanthanum hydroxide nanorods via a rapid microwave-assisted route. J. Alloy. Compd. 473, 283–287 (2009)CrossRefGoogle Scholar
  32. 32.
    Chen, W., Zhou, A.: Microemulsion-solvothermal synthesis and tunable emission of YBO3:Eu for white-light-emitting diodes. J. Phys. Chem. C. 116, 24748–24751 (2012)CrossRefGoogle Scholar
  33. 33.
    Lin, C.S., Hwang, C.C., Lee, W.H., Tong, W.Y.: Preparation of zinc oxide (ZnO) powders with different types of morphology by a combustion synthesis method. Mat. Sci. Engin.: B. 140, 31–37 (2007)CrossRefGoogle Scholar
  34. 34.
    Sharma, S.K., Pitale, S.S., Malik, M., Dubey, R.N., Qureshi, M.S., Ojha, S.: Influence of fuel/oxidizer ratio on lattice parameters and morphology of combustion synthesized ZnO powders. Physica B. 405, 866–874 (2010)CrossRefGoogle Scholar
  35. 35.
    Toniolo, J.C., Lima, M.D., Takimi, A.S., Bergmann, C.P.: Synthesis of alumina powders by the glycine-nitrate combustion process. Mater. Res. Bull. 40, 561–571 (2005)CrossRefGoogle Scholar
  36. 36.
    Alarifi, A., Deraz, N.M., Shaban, S.: Structural, morphological and magnetic properties of NiFe2O4 nano-particles. J. Alloys Compd. 486, 501–506 (2009)CrossRefGoogle Scholar
  37. 37.
    Deraz, N.M.: Glycine-assisted fabrication of nanocrystalline cobalt ferrite system. J. Anal. Appl. Pyrolysis. 88, 103–109 (2010)CrossRefGoogle Scholar
  38. 38.
    Mokkelbost, T., Kaus, I., Grande, T., Einarsrud, M.A.: Combustion synthesis and characterization of nanocrystalline CeO2- based powders. Chem. Mater. 16, 5489–5494 (2004)CrossRefGoogle Scholar
  39. 39.
    Reddy, B.S.B., Mal, I., Tewari, S., Das, K., Das, S.: Aqueous combustion synthesis and characterization of nanosized tetragonal zirconia single crystals. Mater. Trans. A. 38, 1786–1793 (2007)CrossRefGoogle Scholar
  40. 40.
    Hwang, C.C., Wu, T.Y.: Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method. Mater. Sci. Eng. B. 111, 197–206 (2004)CrossRefGoogle Scholar
  41. 41.
    McKittrick, J., Shea, L.E., Bacalski, C.F., Bosze, E.J.: The influence of processing parameters on luminescent oxides produced by combustion synthesis. Displays. 19, 169–172 (1999)CrossRefGoogle Scholar
  42. 42.
    Kosacki, I., Suzuki, T., Anderson, H.U., Colomban, P.: Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ionics. 149, 99–105 (2002)CrossRefGoogle Scholar
  43. 43.
    Chan, S., Bell, A.: Characterization of the preparation of PdSiO2 and PdLa2O3 by laser Raman spectroscopy. J. Catal. 89, 433–441 (1984)CrossRefGoogle Scholar
  44. 44.
    Cornaglia, L.M., Múnera, J., Irusta, S., Lombardo, E.A.: Raman studies of Rh and Pt on La2O3 catalysts used in a membrane reactor for hydrogen production. Appl. Catal. A. 263, 91–101 (2004)CrossRefGoogle Scholar
  45. 45.
    Li, J.Y.: Luminescent materials of rare earths and their applications, p. 8. Chemical Industry, Beijing (2003)Google Scholar
  46. 46.
    Vanheusden, K., Warren, W.L., Seager, C.H., Tallant, D.R., Voigt, J.A., Gnade, B.E.: Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7970 (1996)CrossRefGoogle Scholar
  47. 47.
    Russ, J.C.: Fundamentals of energy dispersive X-ray analysis. Butterworths, London (1984)Google Scholar
  48. 48.
    Miller, B.V., Lines, R.W.: Recent advances in particle size measurements: a critical review. CRC Crit. Rev. Anal Chem. 20, 75–116 (1988)CrossRefGoogle Scholar
  49. 49.
    Baker, T.N.: 5th International Conference on Quantitive Microscopy of High Temperature Materials. 5, 161–189 (2001)Google Scholar
  50. 50.
    Allen, T.: Particle size measurement, 5th edn, 1 & 2. Chapman and Hall (1997)Google Scholar
  51. 51.
    Nalwa, H.S.: Encyclopedia for Nanoscience and Nanotechnology. 1, American Scientific Publishers. (2004)Google Scholar
  52. 52.
    Jillavenkatesa, A., Dapksunas, S.J., Lum Lin-Sien, H.: Particle size characterization, NIST Recommended Practical Guide. (2001)Google Scholar
  53. 53.
    Smyth, C.P.: Dielectric behavior and structure. McGraw-Hill, New York (1965)Google Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • V. Anslin Ferby
    • 1
    • 2
    Email author
  • A. Moses Ezhil Raj
    • 1
    • 2
  • M. Bououdina
    • 3
    • 4
  1. 1.Department of Physics & Research CentreScott Christian College (Autonomous)NagercoilIndia
  2. 2.Manonmaniam Sundaranar UniversityTirunelveliIndia
  3. 3.Nanotechnology CentreThe University of BahrainZallaqKingdom of Bahrain
  4. 4.Department of Physics, College of ScienceThe University of BahrainZallaqKingdom of Bahrain

Personalised recommendations