Hydroxyapatite incorporation into MCM-41 and study of ibuprofen drug release

  • Amirhosein Toozandeh Jani
  • Nahid Bolbol Haghighi
  • Maryam Sheikh Hossein Pour
  • Mohsen Aminian
  • Sahar MolzemiEmail author


In this study, the mesoporous silica/hydroxyapatite (MCM/HA) was successfully synthesized by a simple one-step method as a controlled drug delivery system. The characterization of mesoporous materials was carried out by X-ray diffraction (XRD), transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (XRF), N2 adsorption/desorption analysis, and ultraviolet spectroscopy. Furthermore, ibuprofen (IBU) drug storage capacities and release rate were studied at in vitro conditions. The XRD and HRTEM results showed the formation of hydroxyapatite nanocrystals into mesoporous silica channels. The BET results indicated that the formation of hydroxyapatite into meso-channels leads to decrease in MCM-41 surface area and pore volume. In addition, the ibuprofen loading and release results showed that adsorption and release behavior of ibuprofen were extremely depended on the interaction of the MCM-41 surface groups and ibuprofen and carrier structural properties in the presence of hydroxyapatite crystals.


Mesoporous silica MCM-41 Drug release Ibuprofen Hydroxyapatite 



Authors gratefully thank the Nanonafez Company in Semnan University Science and Technology Park, Shahroud Branch Islamic Azad University, and Shahroud University of Medical Science for supporting the research work.


  1. 1.
    Chen X, Wen H and Park K: Challenges and new technologies of oral controlled release. Oral Controlled Release Formulation Design and Drug Delivery. Theory to Practice. 16, 257(2010)Google Scholar
  2. 2.
    Maderuelo, C., Zarzuelo, A., Lanao, J.M.: Critical factors in the release of drugs from sustained release hydrophilic matrices. J. Control. Release. 154, 2 (2011)CrossRefGoogle Scholar
  3. 3.
    Amatya, S., Park, E.J., Park, J.H., Kim, J.S., Seol, E., Lee, H., Choi, H., Shin, Y.H., Na, D.H.: Drug release testing methods of polymeric particulate drug formulations. J. of Pharmaceutical Investigation. 43, 259–266 (2013)Google Scholar
  4. 4.
    Yousefpour, M., Taherian, Z.: The effects of ageing time on the microstructure and properties of mesoporous silica-hydroxyapatite nanocomposite. Superlattice. Microst. 54, 78 (2013)CrossRefGoogle Scholar
  5. 5.
    Naghiloo, M., Yousefpour, M., Nourbakhsh, M.S., Taherian, Z.: Functionalization of SBA-16 silica particles for ibuprofen delivery. J. Sol-Gel Sci. Technol. 74, 537 (2015)CrossRefGoogle Scholar
  6. 6.
    Porras, Q.A.G., Campero Celts, C., Velasquez Ordonez, M.L., Martinez, O.: SBA-type mesoporous materials with cylindrical and spherical structures for the controlled loading and release of ibuprofen. J. Sol-Gel Sci. Technol. 85, 486 (2018)CrossRefGoogle Scholar
  7. 7.
    Anderson, J., Rosenholm, J., Linden, M.: Mesoporous silica: an alternative diffusion controlled drug delivery system.Topics in Multifunctional Biomaterials and Devices, Ed. N Ashammakhi 6, 1–9 (2008).Google Scholar
  8. 8.
    Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.:  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 359, 710 (1992)CrossRefGoogle Scholar
  9. 9.
    Vallet-Regi, M., Ramila, A., Del Real, R.P., Pérez-Parents, J.: A new property of MCM-41: drug delivery system. Chem. Mater. 13, 308 (2001)CrossRefGoogle Scholar
  10. 10.
    Manzano, M., Aina, V., Arean, C.O., Balas, F., Cauda, V., Colilla, M., Delgado, M.R., Vallet-Regi, M.: Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem. Eng. J. 137, 30 (2008)CrossRefGoogle Scholar
  11. 11.
    Kalantari, S., Yousefpour, M., Taherian, Z.: Synthesis of mesoporous silica/iron oxide nanocomposites and application of optimum sample as adsorbent in removal of heavy metals. Rare Metals. 36, 942 (2017)CrossRefGoogle Scholar
  12. 12.
    Taherian, Z., Yousefpour, M., Tajally, M., Khoshandam, B.: Promotional effect of samarium on the activity and stability of Ni-SBA-15 catalysts in dry reforming of methane. Microporous Mesoporous Mater. 25, 19 (2017)Google Scholar
  13. 13.
    Azizi Ganzagh, M.A., Yousefpour, M., Taherian, Z.: The removal of mercury (II) from water by ag supported on nanomesoporous silica. J. Chem. Biol. 9, 127 (2016)CrossRefGoogle Scholar
  14. 14.
    Jacinto, M.J., WizbikiL, M., Justine, V., Silva, C.: Platinum-supported mesoporous silica of facile recovery as a catalyst for hydrogenation of polyaromatic hydrocarbons under ultra-mild conditions. J. Sol-Gel Sci. Technol. 77, 298 (2016)CrossRefGoogle Scholar
  15. 15.
    Cecilia, J.A., García-Sancho, C., Mérida-Robles, J.M., Santamaría-González, J., Infantes-Molina, A., Moreno-Tots, R., Maireles-Torres, P.: Aluminum doped mesoporous silica SBA-15 for glycerol dehydration to value-added chemicals. J. Sol-Gel Sci. Technol. 342, 83 (2017)Google Scholar
  16. 16.
    Ruiz-Hernández, E., Baeza, A., Vallet-Regí, M.: Smart drug delivery through DNA/magnetic nanoparticle gates. Am. Chem. Soc. 5, 1359 (2011)Google Scholar
  17. 17.
    Vallet-Regı, M., Doadrio, J.C., Doadrio, A.L., Izquierdo-Barba, I., Pérez-Pariente, J.: Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin. Solid State Ionics. 172, 435 (2004)CrossRefGoogle Scholar
  18. 18.
    Paris, J.L., Victoria Cabañas, M., Manzano, M., Vallet-Regí, M.: Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano. 9, 11023 (2015)CrossRefGoogle Scholar
  19. 19.
    Vallet-Regí M, Izquierdo-Barba I, Colilla M: Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. 370, 1421(2012)Google Scholar
  20. 20.
    Colville, M., González, B., Vallet-Regí, M.: Mesoporous silica nanoparticles for the design of smart delivery nanodevices. Biomaterials Science. 1, 114 (2013)CrossRefGoogle Scholar
  21. 21.
    Vivero-Escoto, J.L., Slowing, I.I., Trewyn, B.G., Lin, V.S.Y.: Mesoporous silica nanoparticles for intracellular controlled drug delivery.Wiley Online Library. Small. 6, 1952 (2010)Google Scholar
  22. 22.
    Hu, Y., Zhi, Z., Zhao, Q., Wu, C., Zhao, P., Jiang, H., Jiang, T.: 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Microporous Mesoporous Mater. 147, 94 (2012)CrossRefGoogle Scholar
  23. 23.
    Szegedi, A., Popova, M., Goshev, I., Mihaly, J.: Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release. J. Solid State Chem. 184, 1201 (2011)CrossRefGoogle Scholar
  24. 24.
    Thomas, M.J.K., Slipper, I., Walunj, A., Jain, A., Favretto, M.E., Kallinteri, P., Douroumis, D.: Inclusion of poorly soluble drugs in highly ordered mesoporous silica nanoparticles. Int. J. Pharm. 387, 272 (2010)CrossRefGoogle Scholar
  25. 25.
    Wang, S.: Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 117, 1 (2009)CrossRefGoogle Scholar
  26. 26.
    Izquierdo-Barba, I., Ruiz-Gonzalez, L., Doadrio, J.C., Gonzalez-Calbet, J.M., Vallet-Regi, M.: Tissue regeneration: a new property of mesoporous materials. J Solid State Science. 7, 983 (2005)CrossRefGoogle Scholar
  27. 27.
    Balas, F., Pérez-Pariente, J., Vallet-Regí, M.: In vitro bioactivity of silicon-substituted hydroxyapatites. J. of Biomedical  Materials  Research. A. 66, 364 (2003)Google Scholar
  28. 28.
    Martinez, A., Izquierdo-Barba, I., Vallet-Regi, M.: Bioactivity of a CaO−SiO2 binary glasses system. Chem. Mater. 12, 3080 (2000)CrossRefGoogle Scholar
  29. 29.
    Arcos, D., Vallet-Regí, M.: Bioceramics for drug delivery. Acta Mater. 61, 890 (2013)CrossRefGoogle Scholar
  30. 30.
    Shi, D., Jiang, G., Bauer, J.: The effect of structural characteristics on the in vitro bioactivity of hydroxyapatite. J. Biomed. Mater. Res. 63, 71 (2002)CrossRefGoogle Scholar
  31. 31.
    Li, X., Zhang, L., Dong, X., Liang, J., Shi, J.: Preparation of mesoporous calcium doped silica spheres with narrow size dispersion and their drug loading and degradation behavior. Microporous Mesoporous Mater. 102, 151 (2007)CrossRefGoogle Scholar
  32. 32.
    Yousefpour, M., Afshar, A., Yang, X., Li, X., Yang, B., Wu, Y., Chen, J., Zhang, X.: Nano-crystalline growth of electrochemically deposited apatite coating on pure titanium. J. Electroanal. Chem. 6589, 96 (2006)CrossRefGoogle Scholar
  33. 33.
    Yang, H., Deng, Y., Du, C.: Synthesis and optical properties of mesoporous MCM-41containing doped TiO2 nanoparticles. J Colloid Sur A: Physicochem Eng Aspects. 339, 111 (2009)CrossRefGoogle Scholar
  34. 34.
    Li, Z., Su, K., Cheng, B., Deng, Y.: Organically modified MCM-type material preparation and its usage in controlled amoxicillin delivery. J. Colloid  and Interface Science. 342, 607 (2010)Google Scholar
  35. 35.
    Sousa, A., Souza, K.C., Sousa, E.M.B.: Mesoporous silica/apatite nanocomposite: special synthesis route to control local drug delivery. Acta Biomater. 4, 671 (2008)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • Amirhosein Toozandeh Jani
    • 1
  • Nahid Bolbol Haghighi
    • 2
  • Maryam Sheikh Hossein Pour
    • 1
  • Mohsen Aminian
    • 3
  • Sahar Molzemi
    • 4
    Email author
  1. 1.Department of Medical Radiation Engineering, Faculty of EngineeringIslamic Azad UniversityShahroodIran
  2. 2.Department of Midwifery, School of Nursing and MidwiferyShahroud University of Medical ScienceShahroudIran
  3. 3.Department of MedicineUniversity of Medical Science of Islamic Republic of Iran ArmyTehranIran
  4. 4.Department of Laboratory Sciences, School of Medical Science, Shahrood BranchIslamic Azad UniversityShahroodIran

Personalised recommendations