Long-time corrosion resistance of zircon-alumina refractories by molten steel

  • Rana Nasrollahnezhad
  • Hudsa MajidianEmail author
  • Leila Nikzad
  • Touradj Ebadzadeh


Corrosion resistance of alumina-reinforced zircon refractories has been carried out through static crucible test. Corrosion test was carried out by SPK steel for 150 h at the temperature of 1480 °C. The corrosion resistance was evaluated by measuring the percentage of the corroded part and the penetration depth of molten steel and observing the microstructure of the refractories. Results showed that the decomposition of zircon sample without any additive has been started at 1650 °C and adding 15 wt.% alumina to zircon has led to the accelerating of zircon decomposition. Also, it was concluded that the apparent porosity has approximately a decreasing relation to alumina content as well as temperature. The corrosion resistance of zircon-based composites and the penetration depth of molten steel increased by adding 30 wt.% alumina and decreased with further increase of alumina. Also, the minimum porosity was obtained in the samples containing 15 and 30 wt.% of zircon. Microstructural features of these composites showed zirconia grains embedded in mullite matrix without porosity which may be responsible for providing the corrosion resistance to melt penetration.


Zircon Alumina Phase composition Corrosion resistance 



  1. 1.
    Majidian, H., Nikzad, L., Eslami-Shahed, H., Ebadzadeh, T.: Phase evolution, microstructure and mechanical properties of alumina–mullite–zirconia composites prepared by Iranian andalusite. J. Appl. Ceram. Technol. 13, 1024–1032 (2016)CrossRefGoogle Scholar
  2. 2.
    Ferrari, C.R., Rodrigues, J.A.: Alumina refractoriy containing mullite-zirconia aggregate: microstructural features. Ceramica. 46, 83–90 (2000)CrossRefGoogle Scholar
  3. 3.
    Winston Revie, R.: Corrosion of refractories and ceramics, Uhlig’s corrosion handbook. John Wiley & Sons, Canada (2000)Google Scholar
  4. 4.
    Anjali, M.C., Biswas, P., Chakravarty, D., Hareesh, U.S., Rao, Y.S., Johnson, R.: Low temperature in-situ reaction sintering of zircon: alumina composites trough spark plasma sintering. Sci. Sinter. 44, 323–330 (2012)CrossRefGoogle Scholar
  5. 5.
    Kaiser, A., Lobert, M., Telle, R.: Thermal stability of zircon (ZrSiO4). J. Europ. Ceram. Soc. 28, 2199–2211 (2008)CrossRefGoogle Scholar
  6. 6.
    Kovaleva, M., Prozorova, M., Arseenko, M., Tyurin, Y., Kolisnichenko, O., Yapryntsev, M., Novikov, V., Vagina, O., Sirota, V.: Zircon-based ceramic coatings formed by a new multi-chamber gas-dynamic accelerator. Coatings. 7, 142–153 (2017)CrossRefGoogle Scholar
  7. 7.
    Ertugrul, O., Dalmis, R., Akpinar, S., Kusoglu, I.M., Celik, E.: Influence of zircon particle size on conventional and microwave assisted reaction sintering of in-situ mullite-zirconia composites. Ceram. Int. 42, 11104–11117 (2016)CrossRefGoogle Scholar
  8. 8.
    Bakr, I.M., Wahsh, M.M.S.: Fabrication and characterization of multiphase ceramic composites based on zircon–alumina–magnesia mixtures. Mater. Des. 35, 99–105 (2012)CrossRefGoogle Scholar
  9. 9.
    Aksel, C., Riley, F.L., Konieczny, F.: The corrosion resistance of alumina-mullite-zircon refractories in molten glass. Key Eng. Mater. 264–268, 1803–1806 (2004)CrossRefGoogle Scholar
  10. 10.
    Baudín, C., Criado, E., Bakali, J.J., Pena, P.: Dynamic corrosion of Al2O3–ZrO2–SiO2 and Cr2O3-containing refractories by molten frits. Part I: Macroscopic analysis. J. Europ. Ceram. Soc. 31, 697–703 (2011)CrossRefGoogle Scholar
  11. 11.
    Rahimi, R., Ahmadi, A., Kakooei, S., Sadrnezhaad, S.K.: Corrosion behavior of ZrO2–SiO2–Al2O3 refractories in lead silicate glass melts. J. Europ. Ceram. Soc. 31, 715–721 (2011)CrossRefGoogle Scholar
  12. 12.
    Liang, L., Huang, A., Zhu, X., Gu, H., Fu, L.: Dynamic slag/refractory interaction of lightweight Al2O3-MgO castable for refining ladle. Ceram. Int. 41, 8149–8154 (2015)CrossRefGoogle Scholar
  13. 13.
    Chen, D., Huang, A., Gu, H., Zhang, M., Shao, Z.: Corrosion of Al2O3-Cr2O3 refractory lining for high-temperature solid waste incinerator. Ceram. Int. 41, 14748–14753 (2015)CrossRefGoogle Scholar
  14. 14.
    Huang, A., Fu, L., Gu, H., Wu, B.: Towards slag-resistant, anti-clogging and chrome-free castable for gas purging. Ceram. Int. 42, 18674–18680 (2016)CrossRefGoogle Scholar
  15. 15.
    Fu, L., Huang, A., Lian, P., Gu, H.: Isolation or corrosion of microporous alumina in contact with various CaO-Al2O3-SiO2 slags. Corrosion Science. 120C, 211–218 (2017)CrossRefGoogle Scholar
  16. 16.
    Lian, P., Huang, A., Gu, H., Zou, Y., Fu, L., Wang, Y.: Towards prediction of local corrosion on alumina refractories driven by Marangoni convection. Ceram. Int. 44, 1675–1680 (2018)CrossRefGoogle Scholar
  17. 17.
    Afshar, S., Allaire, C.: The corrosion of refractories by molten aluminum. JOM. 47, 23–27 (1996)CrossRefGoogle Scholar
  18. 18.
    Majidian, H., Nikzad, L., Eslami-Shahed, H., Ebadzadeh, T.: Effect of short milling time and microwave heating on phase evolution, microstructure and mechanical properties of alumina–mullite–zirconia composites. Int. J. Mater. Res. 106, 1269–1279 (2015)CrossRefGoogle Scholar
  19. 19.
    Majidian, H., Ebadzadeh, T., Salahi, E.: Effect of SiC additions on microstructure, mechanical properties and thermal shock behaviour of alumina–mullite–zirconia composites. Mater. Sci. Eng. A. 530, 585–590 (2011)CrossRefGoogle Scholar
  20. 20.
    Velez, M., Smith, J., Moore, R.E.: Refractory degradation in glass tank melters. A survey of testing methods. Ceramica. 43, 178–182 (1997)CrossRefGoogle Scholar
  21. 21.
    Himpel, G., Herrmann, M., Höhn, S.: Comparison of the high-temperature corrosion of aluminium nitride, alumina, magnesia and zirconia ceramics by coal ashes. Ceram. Int. 41, 8288–8298 (2015)CrossRefGoogle Scholar
  22. 22.
    McCauley, R.A.: Corrosion of ceramic and composite materials. Marcel Dekker, Inc., New York (2004)Google Scholar
  23. 23.
    Lee, W.E., Zhang, S.: Direct and indirect slag corrosion of oxide and oxide-c refractories. In: 7th International Conference on Molten Slags Fluxes and Salts, vol. 309, p. 320 (2004)Google Scholar
  24. 24.
    Hirata, T., Morimoto, T., Deguchi, A., Uchida, N.: Corrosion resistance of alumina-chromia ceramic materials against molten slag. Mater. Trans. 43, 2561–2567 (2002)CrossRefGoogle Scholar
  25. 25.
    Wang, Y., Huang, A., Wu, M., Gu, H.: Corrosion of alumina-magnesia castable by high manganese steel with respect to steel cleanness. Ceram. Int. 45, 9884–9890 (2019)CrossRefGoogle Scholar
  26. 26.
    Huang, A., Wang, Y., Zou, Y., Gu, H., Fu, L.: Dynamic interaction of refractory and molten steel: corrosion mechanism of alumina-magnesia castables. Ceram. Int. 44, 14617–14624 (2018)CrossRefGoogle Scholar
  27. 27.
    Huang, A., Wang, Y., Gu, H., Zou, Y.: Dynamic interaction of refractory and molten steel: effect of alumina magnesia castables on alloy steel cleanness. Ceram. Int. 44, 22146–22153 (2018)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • Rana Nasrollahnezhad
    • 1
  • Hudsa Majidian
    • 1
    Email author
  • Leila Nikzad
    • 1
  • Touradj Ebadzadeh
    • 1
  1. 1.Ceramic DepartmentMaterials and Energy Research CenterAlborzIran

Personalised recommendations