Advertisement

Pyroelectric performance of [Bi0.48Na0.4032K0.0768]Sr0.04(Ti0.975Nb0.025)O3 ceramics

  • K. S. Srikanth
  • V. P. Singh
  • Satyanarayan Patel
  • Rahul VaishEmail author
Article
  • 24 Downloads

Abstract

In the present work, the pyroelectric performance of [Bi0.48Na0.4032K0.0768]Sr0.04(Ti0.975Nb0.025)O3 (BNT-2.5Nb) ceramics is investigated. At room temperature, the value of pyroelectric coefficient found as 13.2 × 10−4 C/m2 K which is higher than many lead-free ferroelectric materials. Further, the pyroelectric figures of merit (FOMs) for detectivity (Fd), voltage responsivity (Fv), current responsivity (Fi), and energy harvesting (Fe*) are calculated. BNT-2.5Nb ceramics show pyroelectric open circuit voltage as 0.45 V when it was exposed to temporal temperature gradient. This work result indicates that the Nb-doping in Bi0.5Na0.5TiO3-based composition can be beneficial for lead-free pyroelectric device applications.

Keywords

Pyroelectric Lead-free Dielectric 

Notes

Acknowledgements

Rahul Vaish acknowledges the support from the Indian National Science Academy (INSA), New Delhi, India, through a grant by the Department of Science and Technology (DST), New Delhi, India under the INSA Young Scientists Award. Satyanarayan Patel would like to acknowledge sponsorship provided by the Alexander-von-Humboldt Foundation.

References

  1. 1.
    Bauer, S., Ploss, B.: A method for the measurement of the thermal, dielectric, and pyroelectric properties of thin pyroelectric films and their applications for integrated heat sensors. J. Appl. Phys. 68(12), 6361–6367 (1990)CrossRefGoogle Scholar
  2. 2.
    Whatmore, R.: Pyroelectric devices and materials. Rep. Prog. Phys. 49(12), 1335 (1986)CrossRefGoogle Scholar
  3. 3.
    Patel, S., Chauhan, A., Vaish, R.: Electrocaloric behavior and temperature-dependent scaling of dynamic hysteresis of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics. Int. J. Appl. Ceram. Technol. 12(4), 899–907 (2015)CrossRefGoogle Scholar
  4. 4.
    Charlot, B., Coudouel, D., Very, F., Combette, P., Giani, A.: Droplet generation for thermal transient stimulation of pyroelectric PZT element. Sens. Actuators A: Phys. 225, 103–110 (2015)CrossRefGoogle Scholar
  5. 5.
    Bowen, C., Taylor, J., Le Boulbar, E., Zabek, D., Topolov, V.Y.: A modified figure of merit for pyroelectric energy harvesting. Mater. Lett. 138, 243–246 (2015)CrossRefGoogle Scholar
  6. 6.
    Wang, Z.L., Wu, W.: Nanotechnology-enabled energy harvesting for self-powered micro/nanosystems. Angew. Chem. Int. Ed. 51(47), 11700–11721 (2012)CrossRefGoogle Scholar
  7. 7.
    Vaish, M., Sharma, M., Vaish, R., Chauhan, V.S.: Electrical energy generation from hot/cold air using pyroelectric ceramics. Integr. Ferroelectr. 167(1), 90–97 (2015)CrossRefGoogle Scholar
  8. 8.
    Madhar, N.A., Ilahi, B., Vaish, M.: Pyroelectric energy harvesting using (Ba0.85Ca0.15)(Zr0.1Ti0.89Fe0.01)O3 ceramics. Integr. Ferroelectr. 167(1), 176–183 (2015)CrossRefGoogle Scholar
  9. 9.
    Lang, S.B.: Pyroelectricity: from ancient curiosity to modern imaging tool. Phys. Today. 58(8), 31 (2005)CrossRefGoogle Scholar
  10. 10.
    Zhang, G., Jiang, S., Zeng, Y., Zhang, Y., Zhang, Q., Yu, Y.: High pyroelectric properties of porous Ba0.67Sr0.33TiO3 for uncooled infrared detectors. J. Am. Ceram. Soc. 92(12), 3132–3134 (2009)CrossRefGoogle Scholar
  11. 11.
    Patel, S., Chauhan, A., Kundu, S., Madhar, N.A., Ilahi, B., Vaish, R., et al.: Tuning of dielectric, pyroelectric and ferroelectric properties of 0.715Bi0.5Na0.5TiO3-0.065BaTiO3-0.22SrTiO3 ceramic by internal clamping. AIP Adv. 5(8), 087145 (2015)CrossRefGoogle Scholar
  12. 12.
    Patel, S., Chauhan, A., Vaish, R.: Large pyroelectric figure of merits for Sr-modified Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics. Solid State Sci. 52, 10–18 (2016)CrossRefGoogle Scholar
  13. 13.
    Wang, X., Wu, J., Xiao, D., Zhu, J., Cheng, X., Zheng, T., et al.: Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905–2910 (2014)Google Scholar
  14. 14.
    Liu, L., Huang, Y., Su, C., Fang, L., Wu, M., Hu, C., et al.: Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures. Appl. Phys. A. 104(4), 1047 (2011)Google Scholar
  15. 15.
    Li, J., Wang, F., Leung, C.M., Or, S.W., Tang, Y., Chen, X., et al.: Large strain response in acceptor-and donor-doped Bi0.5Na0.5TiO3-based lead-free ceramics. J. Mater. Sci. 46(17), 5702 (2011)Google Scholar
  16. 16.
    Liu, Z., Ren, W., Nie, H., Peng, P., Liu, Y., Dong, X., et al.: Pressure driven depolarization behavior of Bi0.5Na0.5TiO3 based lead-free ceramics. Appl. Phys. Lett. 110(21), 212901 (2017)Google Scholar
  17. 17.
    Kang, S.-I., Lee, J.-H., Kim, J.-J., Lee, H.Y., Cho, S.-H.: Effect of sintering atmosphere on densification and dielectric characteristics in Sr0.5Ba0.5Nb2O6 ceramics. J. Eur. Ceram. Soc. 24(6), 1031–1035 (2004)Google Scholar
  18. 18.
    Gao, J., Hu, X., Zhang, L., Li, F., Zhang, L., Wang, Y., et al.: Major contributor to the large piezoelectric response in (1-x)Ba (Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics: domain wall motion. Appl. Phys. Lett. 104(25), 252909 (2014)Google Scholar
  19. 19.
    Wang, X., Tang, X., Chan, H.: Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 85(1), 91–93 (2004)CrossRefGoogle Scholar
  20. 20.
    Zuo, R., Ye, C., Fang, X., Li, J.: Tantalum doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28(4), 871–877 (2008)CrossRefGoogle Scholar
  21. 21.
    Guo, F.-F., Yang, B., Zhang, S.-T., Liu, X., Zheng, L.-M., Wang, Z., et al.: Morphotropic phase boundary and electric properties in (1-x)Bi0.5Na0.5TiO3-xBiCoO3 lead-free piezoelectric ceramics. J. Appl. Phys. 111(12), 124113 (2012)Google Scholar
  22. 22.
    Liu, X., Tan, X.: Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv. Mater. 28(3), 574–578 (2016)CrossRefGoogle Scholar
  23. 23.
    Malik, R.A., Hussain, A., Zaman, A., Maqbool, A., Rahman, J.U., Song, T.K., et al.: Structure-property relationship in lead-free A-and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3-SrTiO3 incipient piezoceramics. RSC Adv. 5(117), 96953–96964 (2015)CrossRefGoogle Scholar
  24. 24.
    Ullah, A., Malik, R.A., Ullah, A., Lee, D.S., Jeong, S.J., Lee, J.S., et al.: Electric-field-induced phase transition and large strain in lead-free Nb-doped BNKT-BST ceramics. J. Eur. Ceram. Soc. 34(1), 29–35 (2014)CrossRefGoogle Scholar
  25. 25.
    Pham, K.-N., Hussain, A., Ahn, C.W., Ill, W.K., Jeong, S.J., Lee, J.-S.: Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater. Lett. 64(20), 2219–2222 (2010)CrossRefGoogle Scholar
  26. 26.
    Zhang, J., Dong, X., Cao, F., Guo, S., Wang, G.: Enhanced pyroelectric properties of Cax(Sr0.5Ba0.5)1-xNb2O6 lead-free ceramics. Appl. Phys. Lett. 102(10), 102908 (2013)CrossRefGoogle Scholar
  27. 27.
    Hiruma, Y., Nagata, H., Takenaka, T.: Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions. J. Appl. Phys. 104(12), 124106 (2008)CrossRefGoogle Scholar
  28. 28.
    Yu, P., Ji, Y., Neumann, N., Lee, S.-G., Luo, H., Es-Souni, M.: Application of single-crystalline PMN-PT and PIN-PMN-PT in high-performance pyroelectric detectors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 59(9), 1983–1989 (2012)CrossRefGoogle Scholar
  29. 29.
    Tang, Y., Luo, H.: Investigation of the electrical properties of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals with special reference to pyroelectric detection. J. Phys. D. Appl. Phys. 42(7), 075406 (2009)CrossRefGoogle Scholar
  30. 30.
    Liu, X., Chen, Z., Wu, D., Fang, B., Ding, J., Zhao, X., et al.: Enhancing pyroelectric properties of Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics by optimizing calcination temperature. Jpn. J. Appl. Phys. 54(7), 071501 (2015)CrossRefGoogle Scholar
  31. 31.
    Sun, R., Wang, J., Wang, F., Feng, T., Li, Y., Chi, Z., et al.: Pyroelectric properties of Mn-doped 94.6Na0.5Bi0.5TiO3-5.4BaTiO3 lead-free single crystals. J. Appl. Phys. 115(7), 074101 (2014)CrossRefGoogle Scholar
  32. 32.
    Bowen, C.R., Taylor, J., LeBoulbar, E., Zabek, D., Chauhan, A., Vaish, R.: Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7(12), 3836–3856 (2014)CrossRefGoogle Scholar
  33. 33.
    Lau, S.T., Cheng, C., Choy, S., Lin, D., Kwok, K., Chan, H.L.: Lead-free ceramics for pyroelectric applications. J. Appl. Phys. 103(10), 104105 (2008)CrossRefGoogle Scholar
  34. 34.
    Lang, S.B., Das-Gupta, D.K.: Pyroelectricity: fundamentals and applications. In: Handbook of Advanced Electronic and Photonic Materials and Devices, pp. 1–55. Elsevier (2001)Google Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • K. S. Srikanth
    • 1
  • V. P. Singh
    • 1
    • 2
  • Satyanarayan Patel
    • 3
  • Rahul Vaish
    • 1
    Email author
  1. 1.School of EngineeringIndian Institute of Technology MandiMandiIndia
  2. 2.Government Engineering College BharatpurBharatpurIndia
  3. 3.Institute of Materials ScienceTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations