Advertisement

Dielectric and magnetic properties of BaFe11.7Ni0.3O19 (BHNF) ceramic synthesized by chemical route

  • Atendra Kumar
  • Shiva Sundar Yadava
  • Pooja Gautam
  • Ankur Khare
  • Laxman Singh
  • K. D. MandalEmail author
Research
  • 11 Downloads

Abstract

Nickel-doped barium hexaferrite, BaFe11.7Ni0.3O19 (BHNF), ceramic was prepared by a chemical route. The single phase formation of BHNF ceramic in the sintered material at 1200 °C for 6 h was confirmed by powder XRD. Hexagonal and round shape particles were observed by transmission electron microscopy (TEM), and the particle size was found to be 81 ± 10 nm. The average roughness and root mean square roughness were observed by atomic force microscopy (AFM) evaluated to be 57 and 73 nm, respectively. The zero field cooled (ZFC), field cooled (FC), and magnetic hysteresis curves indicate temperature dependent ferromagnetic behavior of BHNF ceramic. The dielectric constant (ε’) was determined to be 1.7 × 104 at 423 K and 100 Hz. The high value of ε’ indicates the presence of semiconducting grains and insulating grain boundaries which was supported by internal barrier layer capacitance mechanisms.

Keywords

Chemical route FT-IR Magnetic behavior Dielectric properties 

Notes

Acknowledgements

Authors would like to thank the Central Instrument Facility Center (CIFC) IIT (BHU) for providing SEM, TEM, and MPMS facilities.

References

  1. 1.
    Singhal, S., Namgyal, T., Singh, J., Chandra, K., Bansal, S.: A comparative study on the magnetic properties of MFe12O19 and MAlFe11O19 (M = Sr, Ba and Pb) hexaferrites with different morphologies. Ceram. Int. 37(6), 1833–1837 (2011)CrossRefGoogle Scholar
  2. 2.
    Onreabroy, W., Papato, K., Rujijanagul, G., Pengpat, K., Tunkasiri, T.: Study of strontium ferrites substituted by lanthanum on the structural and magnetic properties. Ceram. Int. 38, S415–S419 (2012)CrossRefGoogle Scholar
  3. 3.
    Zhang, X., Duan, Y., Guan, H., Liu, S., Wen, B.: Effect of doping MnO2 on magnetic properties for M-type barium ferrite. J. Magn. Magn. Mater. 311(2), 507–511 (2007)CrossRefGoogle Scholar
  4. 4.
    Pereira, F.M.M., Santos, M.R.P., Sohn, R.S.T.M., Almeida, J.S., Medeiros, A.M.L., Costa, M.M., Sombra, A.S.B.: Magnetic and dielectric properties of the M-type barium strontium hexaferrite (BaxSr1-xFe12O19) in the RF and microwave (MW) frequency range. J. Mater. Sci. Mater. Electron. 20, 408–417 (2009)CrossRefGoogle Scholar
  5. 5.
    Ahamed, T.T., Rahaman, I.Z., Rahaman, M.A.: Study on the properties of the copper substituted NiZn ferrites. J. Mater. Process. Technol. 153, 797–803 (2004)CrossRefGoogle Scholar
  6. 6.
    Almeida, M.R., Paragussau, W., Pires, D.S., Correa, R.R., de Araujo Paschoal, C.W.: Impedance spectroscopy analysis of BaFe12O19 M-type hexaferrite obtained by ceramic method. Ceram. Int. 35(6), 2443–2447 (2009)CrossRefGoogle Scholar
  7. 7.
    Shirtcliffe, N.J., Thompson, S., O’Keefe, E.S., Appleton, S., Perry, C.C.: Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis. Mater. Res. Bull. 42(2), 281–287 (2007)CrossRefGoogle Scholar
  8. 8.
    Ahmed, A.I., Siddig, M.A., Mirghni, A.A., Omer, M.I., Elbadawi, A.A.: Structural and optical properties of Mg1-xZnxFe2O4 nano-ferrites synthesized using co-precipitation method. Advances in Nanoparticles. 4(02), 45 (2015)CrossRefGoogle Scholar
  9. 9.
    Molaeia, M.J., Ataiea, A., Raygan, S., Rahimipour, M.R., Picken, S.J., Tichelaar, F.D., Lagarra, E., Plazola, E.: Magnetic property enhancement and characterization of nano-structured barium ferrite by mechano-thermal treatment. Mater. Charact. 63, 83–89 (2012)CrossRefGoogle Scholar
  10. 10.
    Jotania, R.B., Khomane, R.B., Chauhan, C.C., Menon, S.K., KulKarni, B.D.: Synthesis and magnetic properties of barium-calcium hexaferrite particles prepared by sol-gel and microemulsion techniques. J. Magn. Magn. Mater. 302(6), 1095–1101 (2008)CrossRefGoogle Scholar
  11. 11.
    Molaei, M.J., Ataie, A., Raygan, S., Picken, S.J., Mendes, E., Tichelaar, F.D.: Synthesis and characterization of BaFe12O19/Fe3O4 and BaFe12O19/Fe/Fe3O4 magnetic nano-composites. Powder Technol. 221, 292–295 (2012)CrossRefGoogle Scholar
  12. 12.
    Song, S., Song, Q., Li, J., Mudineoalli, V.R., Zhang, Z.: Characterization of submicrometer-sized NiZn ferrite prepared by spark plasma sintering. Ceram. Int. 40(5), 6473–6479 (2014)CrossRefGoogle Scholar
  13. 13.
    Chang, S., Kangning, S., Pengfel, C.: Microwave absorption properties of Ce-substituted M-type barium ferrite. J. Magn. Magn. Mater. 324(5), 802–805 (2012)CrossRefGoogle Scholar
  14. 14.
    Haijun, Z., Zhichao, L., Chenliang, M., Xi, Y., Liangying, Z., Mingzhong, W.: Preparation and microwave properties of Co-and Ti-doped barium ferrite by citrate sol–gel process. Mater. Chem. Phys. 80(1), 129–134 (2003)CrossRefGoogle Scholar
  15. 15.
    Li, Z.W., Ong, C.K., Yang, Z., Wei, F.L., Zhou, X.Z., Zhao, J.H., Morrish, A.H.: Site preference and magnetic properties for a perpendicular recording material: BaFe12-xZnx/2Zrx/2O19 nanoparticles. Phys. Rev. B. 62(10), 6530–6537 (2000)CrossRefGoogle Scholar
  16. 16.
    Mahmood, S.H., Aloqaily, A.N., Maswadeh, Y., Awadallah, A., Bsoul, I., Awawdeh, M., Juwhari, H.: Effects of heat treatment on the phase evolution, structural, and magnetic properties of Mo-Zn doped M-type hexaferrite. Solid State Phenom. 232, 65–92 (2015)CrossRefGoogle Scholar
  17. 17.
    Cao, H., Lu, P., Yu, Z., Chen, J., Wang, S.: Electronic and magnetic properties of vanadium doped AlN nanosheet under in-plane biaxial strains. Superlattice. Microst. 73, 113–120 (2014)CrossRefGoogle Scholar
  18. 18.
    Lu, P., Zhang, X., Cao, H., Yu, Z., Cai, N., Gao, T., Wang, S.: Vanadium doping on magnetic properties of H-passivated ZnO nanowires. J. Mater. Sci. 49(8), 3177–3182 (2014)CrossRefGoogle Scholar
  19. 19.
    Pan, H.: Electronic and magnetic properties of vanadium dichalcogenides monolayers tuned by hydrogenation. J. Phys. Chem. C. 118(24), 13248–13253 (2014)CrossRefGoogle Scholar
  20. 20.
    Iqbal, M.J., Farooq, S.: Suitability of Sr0.5Ba0.5-xCexFe12-yNiyO19 co-precipitated nanomaterials for inductor applications. J. Alloys Compd. 493(1), 595–600 (2010)CrossRefGoogle Scholar
  21. 21.
    Zhao, W., Zhang, Q., Tang, X., Chenge, H.: Synthesis of nonstoichiometric M-type barium ferrite nanobelt by spark plasma sintering method. Chin. Sci. Bull. 50(13), 1404–1408 (2005)CrossRefGoogle Scholar
  22. 22.
    Rane, M.V., Bahadur, D., Kulkarni, S.D., Date, S.K.: Magnetic properties of NiZr substituted barium ferrite. J. Magn. Magn. Mater. 195(2), L256–L260 (1999)CrossRefGoogle Scholar
  23. 23.
    Singh, L., Rai, U.S., Mandal, K.D.: Preparation and characterization of nanostructured CaCu2.90Zn0.10Ti4O12 ceramic. Nanomaterials and Nanotechnology. 1, 59–66 (2011)Google Scholar
  24. 24.
    Rostami, M., Moradi, M., Alam, R.S., Mardani, R.: Characterization of magnetic and microwave absorption properties of multi-walled carbon nanotubes/Mn-Cu-Zr substituted strontium hexaferrite nanocomposites. Mater. Res. Bull. 83, 379–386 (2016)CrossRefGoogle Scholar
  25. 25.
    Gautam, P., Khare, A., Sharma, S., Singh, N.B., Mandal, K.D.: Characterization of Bi2/3Cu3Ti4O12 ceramics synthesized by semi-wet route. Prog. Nat. Sci. Mater. Int. 26(6), 567–571 (2016)CrossRefGoogle Scholar
  26. 26.
    Awan, S.U., Hasanain, S.K., Anjum, D.H., Awan, M.S., Shah, S.A.: Room temperature p-type conductivity and coexistence of ferroelectric order in ferromagnetic Li doped ZnO nanoparticles. J. Appl. Phys. 116(16), 164109–164119 (2014)CrossRefGoogle Scholar
  27. 27.
    Sarkar, K., Mukherjee, S., Mukherjee, S.: Structural, electrical and magnetic behaviour of undoped and nickel doped nanocrystalline bismuth ferrite by solution combustion route. Processing and Application of Ceramics. 9(1), 53–60 (2015)CrossRefGoogle Scholar
  28. 28.
    Vaishnava, P.P., Senaratne, U., Buc, E., Naik, R., Naik, V.M., Tsoi, G., Wenger, L.E., Boolchand, P.: Magnetic properties of cobalt-ferrite nanoparticles embedded in polystyrene resin. J. Appl. Phys. 99(8), 08G702–08G704 (2006)CrossRefGoogle Scholar
  29. 29.
    Liu, X., Zhong, W., Yang, S., Yu, Z., Gu, B., Du, Y.: Structure and magnetic properties of La3+-substituted strontium hexaferrite particles prepared by sol–gel method. Phys. Status Solidi. 193(2), 314–319 (2002)CrossRefGoogle Scholar
  30. 30.
    Mallick, K.K., Shepherd, P., Green, R.J.: Dielectric properties of M-type barium hexaferrite prepared by co-precipitation. J. Eur. Ceram. Soc. 27(4), 2045–2052 (2007)CrossRefGoogle Scholar
  31. 31.
    Waqar, M., Rafiq, M.A., Mirza, T.A., Khalid, F.A., Khaliq, A., Anwar, M.S., Saleem, M.: Synthesis and properties of nickel-doped nanocrystalline barium hexaferrite ceramic materials. Appl. Phys. A. 124(4), 286–293 (2018)CrossRefGoogle Scholar
  32. 32.
    Mahmood, S.H., Aloqaily, A.N., Maswadeh, Y., Awadallah, A., Bsoul, I., Juwahi, H.: Structural and magnetic properties of Mo-Zn substituted (BaFe12-4xMoxZn3xO19) M-type hexaferrite. Mat. Sci. Res. India. 11(1), 09–20 (2014)CrossRefGoogle Scholar
  33. 33.
    Bueno, P.R., Ribeiro, W.C., Ramírez, M.A., Varela, J.A., Longo, E.: Separation of dielectric and space charge polarizations in CaCu3Ti4O12∕CaTiO3 composite polycrystalline systems. Appl. Phys. Lett. 90(14), 142912–142913 (2007)CrossRefGoogle Scholar
  34. 34.
    Singh, L., Rai, U.S., Mandal, K.D., Sin, B.C., Lee, S.I., Lee, Y.: Dielectric, AC-impedance, modulus studies on 0.5BaTiO3 . 0.5CaCu3Ti4O12 nano-composite ceramic synthesized by one-pot, glycine-assisted nitrate-gel route. Ceram. Int. 40, 10073–10083 (2014)CrossRefGoogle Scholar
  35. 35.
    Singh, L., Kim, I.W., Sin, B.C., Woo, S.H., Hyun, S.H., Mandal, K.D., Lee, Y.: Combustion synthesis of nano-crystalline Bi2/3Cu3Ti2.90Fe0.10O12 using inexpensive TiO2 raw material and its dielectric characterization. Powder Technol. 280, 256–265 (2015)CrossRefGoogle Scholar
  36. 36.
    Khare, A., Yadava, S.S., Gautam, P., Kumar, A., Mandal, K.D., Mukhopadhyay, N.K.: Dielectric properties of nanocomposite based on bismuth copper tianate. J. Aust. Ceram. Soc. 54(1), 139–147 (2018)CrossRefGoogle Scholar
  37. 37.
    Sharma, S., Yadava, S.S., Singh, M.M., Mandal, K.D.: Impedance spectroscopic and dielectric properties of nanosized Y2/3Cu3Ti4O12 ceramic. J. Adv. Dielectr. 4(04), 1450030–1450038 (2014)CrossRefGoogle Scholar
  38. 38.
    Kannan, Y.B., Saravanan, R., Srinivasan, N., Ismail, I.: Effect of sintering on dielectric and AC conductivity properties of Ni0.5Zn0.5Fe2O4 nano ferrite particles. J. Aust. Ceram. Soc. 53(2), 577–581 (2017)CrossRefGoogle Scholar
  39. 39.
    Yadava, S.S., Khare, A., Gautam, P., Kumar, A., Mandal, K.D.: Dielectric, ferroelectric and magnetic study of iron doped hexagonal Ba4YMn3O11.5–δ (BYMO) and its dependence on temperature as well as frequency. New J. Chem. 41(11), 4611–4617 (2017)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • Atendra Kumar
    • 1
  • Shiva Sundar Yadava
    • 1
  • Pooja Gautam
    • 1
  • Ankur Khare
    • 1
  • Laxman Singh
    • 2
  • K. D. Mandal
    • 1
    Email author
  1. 1.Department of Chemistry, Indian Institute of TechnologyBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of ChemistryUniversity of UlsanUlsanRepublic of Korea

Personalised recommendations