Conversion of snail shells (Achatina achatina) acclimatized in Benin to calcium phosphate for medical and engineering use

  • S. A. S Bonou
  • E. Sagbo
  • C. Aubry
  • C. Charvillat
  • B. Ben-Nissan
  • S. CazalbouEmail author


Most methods for producing calcium phosphates involve synthetic calcium and phosphates sources. However, it has recently been proposed that calcium phosphate can be produced with bio-based calcium sources such as nacre, coral, and cuttlefish bones. One specific source of bio-based calcium is found in the Achatina snail shell, which becomes a waste product after flesh consumption. The present work aimed to assess the effectiveness of Achatina snail shells and to study the conversion kinetics in both acid and alkaline environment rich in phosphate ions. It was observed that in acidic conditions, the calcium released by the dissolution of the aragonite precipitates with the phosphate ions of reaction medium induces brushite formation which is rapidly converted into monetite. In alkaline conditions, calcium released from aragonite reacts with surrounding phosphates and carbonate ions and induces carbonated apatite precipitation. Regardless of the source of calcium used in the presence of phosphate, the conversion is carried out according to complex phenomena that involve topotactic transformation or dissolution-precipitation mechanisms.


Calcium phosphate Calcium carbonate Snail shell Chemical conversion XRD FTIR 



  1. 1.
    Westbroek, P., Martin, F.: A marriage of bone and nacre. Nature. 392, 861–862 (1998)CrossRefGoogle Scholar
  2. 2.
    Tadic, D., Epple, M.: A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials. 25(6), 987–994 (2004)CrossRefGoogle Scholar
  3. 3.
    Rocha, J.H.G., Lemos, A.F., Agathopoulos, S., Kannan, S., Valerio, P., Ferreira, J.M.F.: Hydrothermal growth of hydroxyapatite scaffolds from aragonite cuttlefish bones. J Biomed Mater Res A. 77, 160–172 (2006)CrossRefGoogle Scholar
  4. 4.
    Lemos, A.F., Rocha, J.H.G., Quaresma, S.S.F., Kannan, S., Oktar, F.N., Agathopoulos, S., Ferreira, J.M.F.: Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J Eur Ceram Soc. 26, 3639 (2006)CrossRefGoogle Scholar
  5. 5.
    Guo, Y.P., Yao, Y.B., Ning, C.Q., Guo, Y.J., Chu, L.F.: Fabrication of mesoporous carbonated hydroxyapatite microspheres by hydrothermal method. Mater Lett. 65(14), 2205–2208 (2011)CrossRefGoogle Scholar
  6. 6.
    Ni, M., Ratner, B.D.: Nacre surface transformation to hydroxyapatite in a phosphate buffer solution. Biomaterials. 24, 4323 (2003)CrossRefGoogle Scholar
  7. 7.
    Ben-Nissan, B., Milev, A., Vago, R.: Morphology of sol-gel derived nanocoated coralline hydroxyapatite. Biomaterials. 25, 4971 (2004)CrossRefGoogle Scholar
  8. 8.
    Patat, J.L., Guillemin, G.: Natural coral used as a replacement biomaterial in bone grafts. Ann Chir Plast Esthet. 34(3), 221–225 (1989)Google Scholar
  9. 9.
    Damien, E., Revell, P.A.: Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech. 2, 65–73 (2004)Google Scholar
  10. 10.
    He, L.Y., Zhang, X.M., Liu, B., Tian, Y., Ma, W.H.: Effect of magnesium ion on human osteoblast activity. Braz J Med Biol Res. 49(7), e5257 (2016)CrossRefGoogle Scholar
  11. 11.
    Tadier, S., Bareille, R., Siadous, R., Marsan, O., Charvillat, C., Cazalbou, S., Amedee, J., Rey, C., Combes, C.: Strontium-loaded mineral bone cements as sustained release systems: compositions, release properties, and effects on human osteoprogenitor cells. J Biomed Mater Res B Appl Biomater. 100(2), 378–390 (2012)CrossRefGoogle Scholar
  12. 12.
    Macha, I.J., Grossin, D., Ben-Nissan, B.: Conversion of marine structures to calcium phosphate materials: mechanisms of conversion using two different phosphate solutions. Key Eng Mater. 696, 36–39 (2016)CrossRefGoogle Scholar
  13. 13.
    Macha, I.J., Boonyang, U., Cazalbou, S., Ben-Nissan, B., Charvillat, C., Oktar, F.N., Grossin, D.: Comparative study of coral conversion, part 2: microstructural evolution of calcium phosphate. J Aust Ceram Soc. 51(2), 149–159 (2015)Google Scholar
  14. 14.
    Choi, G., Karacan, I., Cazalbou, S., Evans, L., Sinutok, S., Ben-Nissan, B.: Conversion of calcified algae (Halimeda sp) and hard coral (Porites sp) to hydroxyapatite. Key Eng Mater. 758, 157–161 (2017)CrossRefGoogle Scholar
  15. 15.
    Roy, D.M., Linnehan, S.K.: Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature. 247(5438), 220–222 (1974)CrossRefGoogle Scholar
  16. 16.
    Johnsson, M.S.A., Nancollas, G.H.: The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol Med. 3, 61–82 (1992)CrossRefGoogle Scholar
  17. 17.
    Marshall, R.W., Nancollas, G.H.: The kinetics of crystal growth of dicalcium phosphate dehydrate. J Phys Chem. 73(11), 3838–3844 (1969)CrossRefGoogle Scholar
  18. 18.
    Elliott, J.C.: Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam (1994)Google Scholar
  19. 19.
    YoungJae, K., Seon Yong, L., Yul, R., Jinhyeok, L., Juyeun, K., Yongwoo, L., Junseok, B., Young Jae, L.: Optimizing calcium phosphates by the control of pH and temperature via wet precipitation. J Nanosci Nanotechnol. 15, 10008–10016 (2015)CrossRefGoogle Scholar
  20. 20.
    LeGeros, R.Z.: Calcium phosphates in oral biology and medicine. Monogr. Oral Sci. 15, 1–201 (1991)CrossRefGoogle Scholar
  21. 21.
    Chow L.C., Solubility of calcium phosphates. (eds.) Octacalcium phosphate., monogr. Oral Sci. Basel, Karger, vol 18. (2001), 94–111Google Scholar
  22. 22.
    Rodriguez-Navarro, A., Cabral de Melo, C., Batista, N., Morimoto, N., Alvarez-Lloret, P., Ortega-Huertas, M., Fuenzalida, V.M., Arias, J.I., Wiff, J.P., Arias, J.L.: Microstructure and crystallographic texture of giant barnacle (Austromegabalanus psittacus) shell. J Structur Biol. 156, 355–362 (2006)CrossRefGoogle Scholar
  23. 23.
    Radishi, N.A., Mohamed, M., Yusup, S.: The kinetic model of calcination and carbonation of Anadara Granosa. Int J Renew Energy Res. 2(3), 497–503 (2012)Google Scholar
  24. 24.
    Wu, C., Xiao, Y., Chang, J.: Silicate-based bioactive ceramics for bone regeneration application. In: Wu, C., Chang, J., Xiao, Y. (eds.) Advanced bioactive inorganic materials for bone regeneration and drug delivery, pp. 25–46. CRC Press (Taylor & Francis Group, Boca Raton (2013)CrossRefGoogle Scholar
  25. 25.
    Burmester, A., Willumeit-Römer, R., Feyerabend, F.: Behavior of bone cells in contact with magnesium implant material. J Biomed Mater Res B Appl Biomater. 105(1), 165–179 (2017)CrossRefGoogle Scholar
  26. 26.
    Andersen, F.A., Breevi, L.J.: Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chem Scand. 45, 1018–1024 (1991)CrossRefGoogle Scholar
  27. 27.
    Fernandez, M.S., Valezuela, F., Arias, J.I., Neira-Carrillo, A., Arias, J.L.: J Struct Biol. 196, 187–196 (2016)CrossRefGoogle Scholar
  28. 28.
    Narasimhulu, K.V., Lakshamana Rao, J.: EPR and IR spectral studies of the seawater mussel Mytilus conradinus shells. Spectrochim Acta A. 56, 1345–1353 (2000)CrossRefGoogle Scholar
  29. 29.
    Su, C., Suarez, D.L.: In situ infrared speciation of adsorbed carbonate on aluminum and iron oxide. Clay Clay Miner. 45(6), 814–825 (1997)CrossRefGoogle Scholar
  30. 30.
    Addadi, L., Raz, S., Weiner, S.: Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater. 15, 959–970 (2003)CrossRefGoogle Scholar
  31. 31.
    Coleyshaw, E.E., Crump, G., Griffith, W.P.: Vibrational spectra of the hydrated carbonate minerals ikaite, monohydrocalcite, lansfordite and nesquehonite. Spectrochim Acta A Mol Biomol Spectrosc. 59(10), 2231–2239 (2003)CrossRefGoogle Scholar
  32. 32.
    Gueta, R., Natan, A., Addadi, L., Weiner, S., Refson, K., Kronik, L.: Local atomic order and infrared spectra of biogenic calcite. Angew Chem Int Ed. 46, 291–294 (2007)CrossRefGoogle Scholar
  33. 33.
    Rey, C., Combes, C., Drouet, C., Grossin, D.: Bioactive ceramics: physical chemistry. In: Ducheyne, P., Healy, K., Hutmacher, D., Grainger, D.E., Kirkpatrick, J. (eds.) Comprehensive Biomaterials, pp. 187–221. Elsevier (2011)Google Scholar
  34. 34.
    Borkiewicz, O., Rakovan, J., Cahill, C.L.: Time-resolved in situ studies of apatite formation in aqueous solutions. Am Mineral. 95(8–9), 1224–1236 (2010)CrossRefGoogle Scholar
  35. 35.
    Rey, C., Collins, B., Goehl, T., Dickson, I.R., Glimcher, M.J.: The carbonate environment in bone-mineral: a resolution enhanced Fourier-transform infrared-spectroscopy study. Calcif Tissue Int. 45(3), 157–164 (1989)CrossRefGoogle Scholar
  36. 36.
    Şahin, Y., Gündüz, O., Bulut, B., Özyeğin, L., Gökçe, H., Ağaoğulları, D., Chou, J., Kayalı, E., Ben-Nissan, B., Oktar, F.: Nano-bioceramic synthesis from tropical sea snail shells (tiger cowrie - Cypraea Tigris) with simple chemical treatment. Acta Phys Pol A. 127(4), 1055–1058 (2015)CrossRefGoogle Scholar
  37. 37.
    Duncan, J., MacDonald, J.F., Hanna, J.V., Shirosaki, Y., Hayakawa, S., Osaka, A., Skakle, J.M.S., Gibson, I.R.: The role of the chemical composition of monetite on the synthesis and properties of β-tricalcium phosphate. Mater Sci Eng C. 34, 123–129 (2014)CrossRefGoogle Scholar
  38. 38.
    Mekmene, O., Quillard, S., Rouillon, T., Bouler, J.M., Piot, M., Gaucheron, F.: Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions. Dairy Science & Technology, EDP sciences/Springer. 89(3–4), 301–316 (2009)CrossRefGoogle Scholar
  39. 39.
    Wang, L., Nancollas, G.H.: Calcium orthophosphates: crystallization and dissolution. Chem Rev. 108(11), 4628–4669 (2008)CrossRefGoogle Scholar
  40. 40.
    Lima, C.B.A., Airoldi, C.: Topotactic exchange and intercalation of calcium phosphate. Solid State Sci. 6(11), 1245–1250 (2004)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • S. A. S Bonou
    • 1
  • E. Sagbo
    • 1
  • C. Aubry
    • 2
    • 3
  • C. Charvillat
    • 2
  • B. Ben-Nissan
    • 4
  • S. Cazalbou
    • 2
    Email author
  1. 1.Laboratoire de Chimie Inorganique et de l’Environnement (LACIE)-FASTUACCotonouBénin
  2. 2.CIRIMAT Carnot Institute, UPS-INPT-CNRS UMR 5085University of ToulouseToulouseFrance
  3. 3.Laboratoire de Génie Chimique, UMR 5503, INPTUniversité de Toulouse 3ToulouseFrance
  4. 4.Department of Chemistry and Forensic ScienceUniversity of Technology SydneyBroadwayAustralia

Personalised recommendations