Advertisement

Critical research study of quantification methods of mineralogical phases in cementitious materials

  • Islem LabidiEmail author
  • Sonia Boughanmi
  • Houcine Tiss
  • Adel Megriche
Research

Abstract

Cement or clinker phase quantification is considered as an important task for the control of the cement quality and its manufacturing conditions. Indeed, precise clinker phase quantification allows the prediction of cement properties and the identification of possible anomalies during its production process. However, the complexity of cement and clinker mineralogy makes this step very difficult. In this work, a study was carried out to quantify the mineralogical phases of four Portland cements and two clinkers using two different methods: The first is the traditional Bogue method and the second is X-ray diffraction coupled with Rietveld refinement. The comparison method results showed that the Rietveld method is the most precise and powerful tool for cement and clinker phase quantification since it takes into account the minor phases such as gypsum, anhydrite, and hemihydrate and differentiates between the polymorphism varieties of cement phases (M1 alite, M3 alite, β belite, and γ belite). However, it was shown that Bogue calculation remains a primary estimation method of only the major clinker phases (C3S, C2S, C3A, and C4AF). Only for calcite amount must be better estimated by thermogravimetric technique or calcimetry method than Rietveld method, since there is an overlapping of the peaks of calcite and alite.

Keywords

Clinker phase quantification Portland cement Mineralogical phases X-ray diffraction Rietveld refinement Bogue calculation Minor phases Polymorphism varieties 

Notes

References

  1. 1.
    Michaux, M., Nelson, E.B., Vidick, B.: 2 chemistry and characterization of Portland cement. Dev Pet Sci. 28, 2-1–2-17 (1990)Google Scholar
  2. 2.
    Megriche A: The Effect of Marl and Clay Compositions on the Portland Cement Quality; 2016Google Scholar
  3. 3.
    Taylor, H.: Cement Chemistry. Academic Press, London (1990)Google Scholar
  4. 4.
    Chatterjee, A.K.: Chemistry and engineering of the clinkerization process—incremental advances and lack of breakthroughs. Cem Concr Res. 41(7), 624–641 (2011)Google Scholar
  5. 5.
    De Schepper, M., De Buysser, K., Van Driessche, I., De Belie, N.: The regeneration of cement out of completely recyclable concrete: clinker production evaluation. Constr Build Mater. 38, 1001–1009 (2013)Google Scholar
  6. 6.
    Aldridge, L.: Accuracy and precision of an X-ray diffraction method for analysing Portland cements. Cem Concr Res. 12(4), 437–446 (1982)Google Scholar
  7. 7.
    Ferrari, L., Kaufmann, J., Winnefeld, F., Plank, J.: Reaction of clinker surfaces investigated with atomic force microscopy. Constr Build Mater. 35, 92–96 (2012)Google Scholar
  8. 8.
    Odler, I.: Hydration, setting and hardening of Portland cement. In: Lea’s Chemistry of Cement and Concrete, vol. 4, pp. 241–297 (1998)Google Scholar
  9. 9.
    Bogue, R.H.: Calculation of the compounds in Portland cement. Ind Eng Chem Anal Ed. 1(4), 192–197 (1929)Google Scholar
  10. 10.
    Stutzman PE: Guide for X-ray powder diffraction analysis of Portland cement and clinker: US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Office of Applied Economics, Building and Fire Research Laboratory; (1996)Google Scholar
  11. 11.
    Rietveld, H.: A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 2(2), 65–71 (1969)Google Scholar
  12. 12.
    Khelifi, S., Ayari, F., Tiss, H., Hassan Chehimi, D.B.: X-ray fluorescence analysis of Portland cement and clinker for major and trace elements: accuracy and precision. J Aust Ceram Soc. 53(2), 743–749 (2017)Google Scholar
  13. 13.
    Standard N: P 94-048 (2003) Sols: Reconnaissance et Essais–Détermination de la teneur en calcite–Méthode du calcimètre. In.: January, AFNORGoogle Scholar
  14. 14.
    Choudhary, H., Anupama, A., Kumar, R., Panzi, M., Matteppanavar, S., Sherikar, B.N., Sahoo, B.: Observation of phase transformations in cement during hydration. Constr Build Mater. 101, 122–129 (2015)Google Scholar
  15. 15.
    Aranda, M.A., Ángeles, G., León-Reina, L.: Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products. Rev Mineral Geochem. 74(1), 169–209 (2012)Google Scholar
  16. 16.
    Nishi, F., Takéuchi, Y., Maki, I.: Tricalcium silicate Ca3O [SiO4]: the monoclinic superstructure. Zeitschrift für Kristallographie-Crystalline Materials. 172(1–4), 297–314 (1985)Google Scholar
  17. 17.
    Mondal, P., Jeffery, J.: The crystal structure of tricalcium aluminate, Ca3Al2O6. Acta Crystallogr B Struct Crystallogr Cryst Chem. 31(3), 689–697 (1975)Google Scholar
  18. 18.
    Colville, A., Geller, S.: The crystal structure of brownmillerite, Ca2FeAlO5. Acta Crystallogr B Struct Crystallogr Cryst Chem. 27(12), 2311–2315 (1971)Google Scholar
  19. 19.
    Standard A: C150/C150M-15 (2015) Standard specification for Portland cement ASTM international, West Conshohocken, PA, (2015).  https://doi.org/10.1520/C0150-15.In
  20. 20.
    Wesselsky, A., Jensen, O.M.: Synthesis of pure Portland cement phases. Cem Concr Res. 39(11), 973–980 (2009)Google Scholar
  21. 21.
    Maki, I., Goto, K.: Factors influencing the phase constitution of alite in Portland cement clinker. Cem Concr Res. 12(3), 301–308 (1982)Google Scholar
  22. 22.
    Courtial, M., De Noirfontaine, M.-N., Dunstetter, F., Gasecki, G., Signes-Frehel, M.: Polymorphism of tricalcium silicate in Portland cement: a fast visual identification of structure and superstructure. Powder Diffract. 18(1), 7–15 (2003)Google Scholar
  23. 23.
    Dunstetter, F., De Noirfontaine, M.-N., Courtial, M.: Polymorphism of tricalcium silicate, the major compound of Portland cement clinker: 1. Structural data: review and unified analysis. Cem Concr Res. 36(1), 39–53 (2006)Google Scholar
  24. 24.
    Boughanmi, S., Labidi, I., Megriche, A., El Maaoui, M., Nonat, A.: Natural fluorapatite as a raw material for Portland clinker. Cem Concr Res. 105, 72–80 (2018)Google Scholar
  25. 25.
    Staněk, T., Sulovský, P.: The influence of the alite polymorphism on the strength of the Portland cement. Cem Concr Res. 32(7), 1169–1175 (2002)Google Scholar
  26. 26.
    Bhanumathidas, N., Kalidas, N.: Dual role of gypsum: set retarder and strength accelerator. Indian Concr J. 78(3), 1–4 (2004)Google Scholar
  27. 27.
    Lutterotti, L., Scardi, P., Maistrelli, P.: LSI—a computer program for simultaneous refinement of material structure and microstructure. J Appl Crystallogr. 25(3), 459–462 (1992)Google Scholar
  28. 28.
    Le Saoût, G., Kocaba, V., Scrivener, K.: Application of the Rietveld method to the analysis of anhydrous cement. Cem Concr Res. 41(2), 133–148 (2011)Google Scholar
  29. 29.
    Goswami, G., Mohapatra, B., Panda, J.: Gypsum dehydration during comminution and its effect on cement properties. J Am Ceram Soc. 73(3), 721–723 (1990)Google Scholar
  30. 30.
    Strydom, C., Potgieter, J.: Dehydration behaviour of a natural gypsum and a phosphogypsum during milling. Thermochim Acta. 332(1), 89–96 (1999)Google Scholar
  31. 31.
    Murat, M.: Sulfates de calcium et matériaux dérivés. Rapport de synthèse sur les méthodes d'analyse (détermination de la composition chimique et minéralogique). Mater Struct. 15(1), 63–91 (1982)Google Scholar
  32. 32.
    Ramachandran, V.S., Paroli, R.M., Beaudoin, J.J., Delgado, A.H.: Handbook of Thermal Analysis of Construction Materials. William Andrew (2002)Google Scholar
  33. 33.
    Odigure, J.: Kinetic modelling of cement raw mix containing iron particles and clinker microstructure. Cem Concr Res. 26(9), 1435–1442 (1996)Google Scholar
  34. 34.
    Odigure, J.O.: Grindability of cement clinker from raw mix containing metallic particles. Cem Concr Res. 29(3), 303–307 (1999)Google Scholar
  35. 35.
    De Noirfontaine M-N: Etude structurale et cristallographie des composés du ciment anhydre. Ecole Polytechnique X; (2000)Google Scholar
  36. 36.
    Jadhav, R., Debnath, N.: Computation of X-ray powder diffractograms of cement components and its application to phase analysis and hydration performance of OPC cement. Bull Mater Sci. 34(5), 1137–1150 (2011)Google Scholar
  37. 37.
    De La Torre, Á.G., Bruque, S., Campo, J., Aranda, M.A.: The superstructure of C 3 S from synchrotron and neutron powder diffraction and its role in quantitative phase analyses. Cem Concr Res. 32(9), 1347–1356 (2002)Google Scholar
  38. 38.
    EN N: 196-1, Méthodes d’essais des ciments-Partie 1: détermination des résistances mécaniques. French Standard (2006)Google Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • Islem Labidi
    • 1
    Email author
  • Sonia Boughanmi
    • 1
  • Houcine Tiss
    • 2
  • Adel Megriche
    • 1
  1. 1.Laboratory of Applied Mineral Chemistry (UR11ES18), Department of Chemistry, Faculty of Sciences of TunisTunis El Manar UniversityTunisTunisia
  2. 2.Laboratory ProductionCements of BizerteBizerteTunisia

Personalised recommendations