Photocatalytic and self-cleaning properties of glazed ceramic tiles coated with TiO2 and Al-doped TiO2 thin films

  • Alireza BarmehEmail author
  • Mohammad Reza Nilforoushan
  • Sasan Otroj


The undoped and Al-doped TiO2 coatings on glazed ceramic tiles have been prepared by sol–gel and spray coating process. The samples were heat treated at 550 °C with 15-min soaking. The coatings were characterized for microstructure, surface morphology, elemental analysis, and thickness using the grazing-incidence X-ray diffraction (GIXRD), field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscope (SEM), respectively. For the Al-doped TiO2 coating, only anatase phase was identified, but the undoped TiO2 coating exhibited a mix of anatase and rutile. The Al-doped TiO2 coating exhibited a homogeneous and relatively crack-free morphology, but the undoped TiO2 coating had significant cracks. The elemental analysis confirmed Ti, O, and Al in the coatings. The undoped and Al-doped TiO2 films had uniform thickness. The photocatalytic decomposition of methylene blue and the photo-induced wettability of the samples were investigated using the UV–Vis spectrophotometer and water contact angle measurement, respectively. The Al-doped TiO2 coating exhibited more efficient photocatalytic activity and hydrophilicity than the other samples after the UV irradiation.


Al doping Photocatalytic activity Spray coating Methylene blue Wetting 



  1. 1.
    Banerjee, S., Dionysiou, D.D., Pillai, S.C.: Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ. 176, 396–428 (2015)Google Scholar
  2. 2.
    Murugan, K., Subasri, R., Rao, T., Gandhi, A.S., Murty, B.: Synthesis, characterization and demonstration of self-cleaning TiO2 coatings on glass and glazed ceramic tiles. Progress in Organic Coatings. 76(12), 1756–1760 (2013)Google Scholar
  3. 3.
    da Silva, A.L., Dondi, M., Hotza, D.: Self-cleaning ceramic tiles coated with Nb2O5-doped-TiO2 nanoparticles. Ceram Int. 43(15), 11986–11991 (2017)Google Scholar
  4. 4.
    Määttä, J., Piispanen, M., Kymäläinen, H.-R., Uusi-Rauva, A., Hurme, K.-R., Areva, S., Sjöberg, A.-M., Hupa, L.: Effects of UV-radiation on the cleanability of titanium dioxide-coated glazed ceramic tiles. J Eur Ceram Soc. 27(16), 4569–4574 (2007)Google Scholar
  5. 5.
    Berto, A.M.: Ceramic tiles: above and beyond traditional applications. J Eur Ceram Soc. 27(2–3), 1607–1613 (2007)Google Scholar
  6. 6.
    Petrovič, V., Ducman, V., Škapin, S.D.: Determination of the photocatalytic efficiency of TiO2 coatings on ceramic tiles by monitoring the photodegradation of organic dyes. Ceram Int. 38(2), 1611–1616 (2012)Google Scholar
  7. 7.
    Akpan, U.G., Hameed, B.H.: Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater. 170(2–3), 520–529 (2009)Google Scholar
  8. 8.
    Kumar, S.G., Devi, L.G.: Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A. 115(46), 13211–13241 (2011)Google Scholar
  9. 9.
    Cedillo-González, E.I., Riccò, R., Montorsi, M., Montorsi, M., Falcaro, P., Siligardi, C.: Self-cleaning glass prepared from a commercial TiO2 nano-dispersion and its photocatalytic performance under common anthropogenic and atmospheric factors. Build Environ. 71, 7–14 (2014)Google Scholar
  10. 10.
    Gupta, S.M., Tripathi, M.: A review of TiO2 nanoparticles. Chin Sci Bull. 56(16), 1639 (2011)Google Scholar
  11. 11.
    Hanaor, D.A., Sorrell, C.C.: Review of the anatase to rutile phase transformation. J Mater Sci. 46(4), 855–874 (2011)Google Scholar
  12. 12.
    Matsui, M., Akaogi, M.: Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2. Mol Simul. 6(4–6), 239–244 (1991)Google Scholar
  13. 13.
    Nishide, T., Sato, M., Hara, H.: Crystal structure and optical property of TiO2 gels and films prepared from Ti-edta complexes as titania precursors. J Mater Sci. 35(2), 465–469 (2000)Google Scholar
  14. 14.
    Ting, C.-C., Chen, S.-Y., Liu, D.-M.: Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films. J Appl Phys. 88(8), 4628–4633 (2000)Google Scholar
  15. 15.
    Francisco, M.S.P., Mastelaro, V.R.: Inhibition of the anatase–rutile phase transformation with addition of CeO2 to CuO−TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies. Chem Mater. 14(6), 2514–2518 (2002)Google Scholar
  16. 16.
    Luttrell, T., Halpegamage, S., Sutter, E., Batzill, M.: Photocatalytic activity of anatase and rutile TiO2 epitaxial thin film grown by pulsed laser deposition. Thin Solid Films. 564, 146–155 (2014)Google Scholar
  17. 17.
    Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., Batzill, M.: Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO2 films. Sci Rep. 4, 4043 (2014)Google Scholar
  18. 18.
    Yoganarasimhan, S., Rao, C.R.: Mechanism of crystal structure transformations. Part 3.—factors affecting the anatase-rutile transformation. Trans Faraday Soc. 58, 1579–1589 (1962)Google Scholar
  19. 19.
    Arbiol, J., Cerda, J., Dezanneau, G., Cirera, A., Peiro, F., Cornet, A., Morante, J.: Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J Appl Phys. 92(2), 853–861 (2002)Google Scholar
  20. 20.
    Rath, C., Mohanty, P., Pandey, A., Mishra, N.: Oxygen vacancy induced structural phase transformation in TiO2 nanoparticles. J Phys D Appl Phys. 42(20), 205101 (2009)Google Scholar
  21. 21.
    Yang, Y., Li, X.-j., Chen, J.-t., Wang, L.-y.: Effect of doping mode on the photocatalytic activities of Mo/TiO2. J Photochem Photobiol A Chem. 163(3), 517–522 (2004)Google Scholar
  22. 22.
    Depero, L., Marino, A., Allieri, B., Bontempi, E., Sangaletti, L., Casale, C., Notaro, M.: Morphology and microstructural properties of TiO2 nanopowders doped with trivalent Al and Ga cations. J Mater Res. 15(10), 2080–2086 (2000)Google Scholar
  23. 23.
    Lee, J.E., Oh, S.-M., Park, D.-W.: Synthesis of nano-sized Al doped TiO2 powders using thermal plasma. Thin Solid Films. 457(1), 230–234 (2004)Google Scholar
  24. 24.
    Vásquez, G.C., Peche-Herrero, M.A., Maestre, D., Alemán, B., Ramírez-Castellanos, J., Cremades, A., González-Calbet, J.M., Piqueras, J.: Influence of Fe and Al doping on the stabilization of the anatase phase in TiO2 nanoparticles. J Mater Chem C. 2(48), 10377–10385 (2014)Google Scholar
  25. 25.
    Liu, J., Sun, Q., Fu, Y., Shen, J.: Preparation and characterization of mesoporous VOx–TiO2 complex oxides for the selective oxidation of methanol to dimethoxymethane. J Colloid Interface Sci. 335(2), 216–221 (2009)Google Scholar
  26. 26.
    Okada, K., Yamamoto, N., Kameshima, Y., Yasumori, A., MacKenzie, K.J.: Effect of silica additive on the anatase-to-rutile phase transition. J Am Ceram Soc. 84(7), 1591–1596 (2001)Google Scholar
  27. 27.
    Sohrabi, H., Mozafari, A., Sajjadnejad, M., Tabaian, S., Omidvar, H.: Influence of operational parameters on the TiO2 photocatalytic degradation of methylene blue. Mater Sci Technol. 32(12), 1282–1288 (2016)Google Scholar
  28. 28.
    Reidy, D., Holmes, J., Morris, M.: The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. J Eur Ceram Soc. 26(9), 1527–1534 (2006)Google Scholar
  29. 29.
    Kumar, K.J., Raju, N.R.C., Subrahmanyam, A.: Thickness dependent physical and photocatalytic properties of ITO thin films prepared by reactive DC magnetron sputtering. Appl Surf Sci. 257(7), 3075–3080 (2011)Google Scholar
  30. 30.
    Wu, C.-Y., Lee, Y.-L., Lo, Y.-S., Lin, C.-J., Wu, C.-H.: Thickness-dependent photocatalytic performance of nanocrystalline TiO2 thin films prepared by sol–gel spin coating. Appl Surf Sci. 280, 737–744 (2013)Google Scholar
  31. 31.
    Channei, D., Inceesungvorn, B., Wetchakun, N., Ukritnukun, S., Nattestad, A., Chen, J., Phanichphant, S.: Photocatalytic degradation of methyl orange by CeO2 and Fe–doped CeO2 films under visible light irradiation. Sci Rep. 4, 5757 (2014)Google Scholar
  32. 32.
    Varma, R.S., Thorat, N., Fernandes, R., Kothari, D., Patel, N., Miotello, A.: Dependence of photocatalysis on charge carrier separation in Ag-doped and decorated TiO2 nanocomposites. Catalysis Science & Technology. 6(24), 8428–8440 (2016)Google Scholar
  33. 33.
    Pan, X., Yang, M.-Q., Fu, X., Zhang, N., Xu, Y.-J.: Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale. 5(9), 3601–3614 (2013)Google Scholar
  34. 34.
    Gaya, U.I., Abdullah, A.H.: Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev. 9(1), 1–12 (2008)Google Scholar
  35. 35.
    Mohamed, M.M., Al-Esaimi, M.M.: Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: degradation of methylene blue dye. J Mol Catal A Chem. 255(1–2), 53–61 (2006)Google Scholar
  36. 36.
    Liu, B., Zhao, Q., Zhao, X.: Recent progress on self-cleaning glasses and integration with other functions. In: Self-Cleaning Materials and Surfaces: a Nanotechnology Approach, pp. 57–88 (2013)Google Scholar
  37. 37.
    Kong, X., Hu, Y., Wang, X., Pan, W.: Effect of surface morphology on wettability conversion. Journal of Advanced Ceramics. 5(4), 284–290 (2016)Google Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Engineering DepartmentShahrekord UniversityShahrekordIran

Personalised recommendations