Synthesis and characterization of V2O5/BiVO4 cake-like microstructures

  • Limiao ChenEmail author
  • Xinyan Feng


V2O5/BiVO4 cake-like microstructures with uniform diameter were successfully fabricated with excess NaVO3 in the reaction solution under hydrothermal conditions. As-fabricated V2O5/BiVO4 microstructures were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), UV-vis absorption spectroscopy, photoluminescence (PL) spectroscopy, and Brunauer-Emmett-Teller (BET) surface area measurements. The possible formation mechanism of the cake-like V2O5/BiVO4 microstructure was proposed based on the morphological evolution versus the reaction time. The photocatalytic performance of the V2O5/BiVO4 composites was measured by studying the visible-light decomposition of rhodamine B (RhB) molecules in solution. The V2O5/BiVO4 composites exhibit an obviously enhanced photocatalytic activity compared to the pure BiVO4, as a result of the strengthened absorption ability in the visible-light region and the formation of heterojunction structure between V2O5 and BiVO4. This work presents a new way to develop BiVO4-based efficient photocatalysts in the application of wastewater treatment.


Bismuth vanadate Vanadium pentoxide Composite photocatalyst Hydrothermal synthesis Photocatalytic activity 


Funding information

This work was supported by the National Natural Science Foundation of China (No. 21776317).

Supplementary material

41779_2019_319_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1075 kb)


  1. 1.
    Zhou, M., Wu, H.B., Bao, J., Liang, L., Lou, X.W., Xie, Y.: Ordered macroporous BiVO4 architectures with controllable dual porosity for efficient solar water splitting. Angew Chem Int Ed. 52, 8579–8583 (2013)CrossRefGoogle Scholar
  2. 2.
    Huang, Z.F., Pan, L., Zou, J.J., Zhang, X.W., Wang, L.: Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale. 6, 14044–14063 (2014)CrossRefGoogle Scholar
  3. 3.
    Tan, H.L., Amal, R., Ng, Y.H.: Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. J Mater Chem A. 5, 16498–16521 (2017)CrossRefGoogle Scholar
  4. 4.
    Wu, M., Jing, Q., Feng, X., Chen, L.: BiVO4 microstructures with various morphologies: synthesis and characterization. Appl Surf Sci. 427, 525–532 (2018)CrossRefGoogle Scholar
  5. 5.
    Wang, Q., Hisatomi, T., Jial, Q., Tokudome, H., Zhong, M., Wang, C., Pan, Z., Takata, T., Nakabayashi, M., Shibata, N., Li, Y., Sharp, I.D., Kudo, A., Yamada, T., Domen, K.: Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat Mater. 15, 611–615 (2016)CrossRefGoogle Scholar
  6. 6.
    Gao, X., Wu, H.B., Zheng, L., Zhong, Y., Hu, Y., Lou, X.W.: Formation of mesoporous heterostructured BiVO4/Bi2S3 hollow discoids with enhanced photoactivity. Angew Chem Int Ed. 53, 5917–5921 (2014)CrossRefGoogle Scholar
  7. 7.
    Feng, J., Cheng, L., Zhang, J., Okoth, O.K., Chen, F.: Preparation of BiVO4/ZnO composite film with enhanced visible-light photoelectrocatalytic activity. Ceram Int. 44, 3672–3677 (2018)CrossRefGoogle Scholar
  8. 8.
    Shi, X., Choi, Y., Zhang, K., Kwon, J., Kim, D.Y., Lee, J.K., Oh, S.H., Kim, J.K., Park, J.H.: Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat Commun. 5, 4775 (2014)CrossRefGoogle Scholar
  9. 9.
    Lopes, O.F., Carvalho, K.T.G., Avansi, W., Ribeiro, C.: Growth of BiVO4 nanoparticles on a Bi2O3 surface: effect of heterojunction formation on visible irradiation-driven catalytic performance. J Phys Chem C. 121, 13747–13756 (2017)CrossRefGoogle Scholar
  10. 10.
    Chen, F., Yang, Q., Sun, J., Yao, F., Wang, S., Wang, Y., Wang, X., Li, X., Niu, C., Wang, D., Zeng, G.: Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction under visible-light irradiation: mineralization efficiency and mechanism. ACS Appl Mater Interfaces. 8, 32887–32900 (2016)CrossRefGoogle Scholar
  11. 11.
    Liu, C., Zhou, J., Su, J., Guo, L.: Turning the unwanted surface bismuth enrichment to favourable BiVO4/BiOCl heterojunction for enhanced photoelectrochemical performance. Appl Catal B Environ. 241, 506–513 (2019)CrossRefGoogle Scholar
  12. 12.
    Chen, L., Yu, Y., Wu, M., Huang, J., Liu, Y., Liu, X., Qiu, G.: Synthesis of hollow BiVO4/Ag composite microspheres and their photocatalytic and surface-enhanced Raman scattering properties. ChemPlusChem. 80, 871–877 (2015)CrossRefGoogle Scholar
  13. 13.
    Jing, Q., Feng, X., Zhao, X., Duan, Z., Pan, J., Chen, L., Liu, Y.: Bi/BiVO4 chain-like hollow microstructures: synthesis, characterization and application as visible-light-active photocatalysts. ACS Appl Nano Mater. 1, 2653–2661 (2018)CrossRefGoogle Scholar
  14. 14.
    Schneider, K., Lubecka, M., Czapla, A.: V2O5 thin films for gas sensor applications. Sensors Actuators B Chem. 236, 970–977 (2016)CrossRefGoogle Scholar
  15. 15.
    Zhang, Y., Lai, J., Gong, Y., Hu, Y., Liu, J., Sun, C., Wang, Z.L.: A safe high- performance all-solid-state lithium-vanadium battery with a free standing V2O5 nanowire composite paper cathode. ACS Appl Mater Interfaces. 8, 34309–34316 (2016)CrossRefGoogle Scholar
  16. 16.
    Liu, X., Ding, S., Song, T., Jiang, X., Peng, X.: Processing and photocatalyst activity of ion-doped V2O5 powders. Ceram Int. 41, 740–743 (2015)CrossRefGoogle Scholar
  17. 17.
    Bayati, M.R., Golestani-Fard, F., Moshfegh, A.Z.: Photo-degradation of methelyne blue over V2O5–TiO2 nano-porous layers synthesized by micro arc oxidation. Catal Lett. 134, 162–168 (2010)CrossRefGoogle Scholar
  18. 18.
    Shahid, M., Shakir, I., Yang, S.J., Kang, D.J.: Facile synthesis of core–shell SnO2/V2O5 nanowires and their efficient photocatalytic property. Mater Chem Phys. 124, 619–622 (2010)CrossRefGoogle Scholar
  19. 19.
    Yin, H., Yu, K., Song, C., Huang, R., Zhu, Z.: Synthesis of au-decorated V2O5@ZnO heteronanostructures and enhanced plasmonic photocatalytic activity. ACS Appl Mater Interfaces. 6, 14851–14860 (2014)CrossRefGoogle Scholar
  20. 20.
    Su, J., Zou, X.X., Li, G.D., Wei, X., Yan, C., Wang, Y.N., Zhao, J., Zhou, L.J., Chen, J.S.: Macroporous V2O5−BiVO4 composites: effect of heterojunction on the behavior of photogenerated charges. J Phys Chem C. 115, 8064–8071 (2011)CrossRefGoogle Scholar
  21. 21.
    Wang, Y., Liu, L., Xu, L., Cao, X., Li, X., Huang, Y., Meng, C., Wang, Z., Zhu, W.: Ag2O/TiO2/V2O5 one-dimensional nanoheterostructures for superior solar light photocatalytic activity. Nanoscale. 6, 6790–6797 (2014)CrossRefGoogle Scholar
  22. 22.
    Sun, J., Li, X., Zhao, Q., Ke, J., Zhang, D.: Novel V2O5/BiVO4/ TiO2 nanocomposites with high visible-light-induced photocatalytic activity for the degradation of toluene. J Phys Chem C. 118, 10113–10121 (2014)CrossRefGoogle Scholar
  23. 23.
    Xu, X., Kou, S., Guo, X., Li, X., Ma, X., Mao, H.: The enhanced photocatalytic properties for water oxidation over Bi/BiVO4/V2O5 composite. J Phys Chem C. 121, 16257–16265 (2017)CrossRefGoogle Scholar
  24. 24.
    Jiang, H., Nagai, M., Kobayashi, K.: Enhanced photocatalytic activity for degradation of methylene blue over V2O5/BiVO4 composite. J Alloys Compd. 479, 821–827 (2009)CrossRefGoogle Scholar
  25. 25.
    Pradeeswari, K., Venkatesan, A., Pandi, P., Kumar, R.M.: Effect of Zn2+, Ti2+ dopants on structural, optical and electrochemical properties of V2O5 nanoparticles synthesized via non-aqueous sol-gel route. J Mater Sci Mater El. 29, 19689–19696 (2018)CrossRefGoogle Scholar
  26. 26.
    Wang, X., Zhuang, J., Peng, Q., Li, Y.D.: A general strategy nanocrystal synthesis. Nature. 437, 121–124 (2005)CrossRefGoogle Scholar
  27. 27.
    Jing, Q., Feng, X., Pan, J., Chen, L., Liu, Y.: Facile synthesis of Bi/BiVO4 composite ellipsoids with high photocatalytic activity. Dalton Trans. 47, 2602–2609 (2018)CrossRefGoogle Scholar
  28. 28.
    Ju, P., Wang, Y., Sun, Y., Zhang, D.: Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation. Dalton Trans. 45, 4588–4602 (2016)CrossRefGoogle Scholar
  29. 29.
    Thalluri, S.M., Suarez, C.M., Hussain, M., Hernandez, S., Virga, A., Saracco, G., Russo, N.: Evaluation of the parameters affecting the visible-light- induced photocatalytic activity of monoclinic BiVO4 for water oxidation. Ind Eng Chem Res. 52, 17414–17418 (2013)CrossRefGoogle Scholar
  30. 30.
    He, Z., Shi, Y., Gao, C., Wen, L., Chen, J., Song, S.: BiOCl/BiVO4 p–n heterojunction with enhanced photocatalytic activity under visible-light irradiation. J Phys Chem C. 118, 389–398 (2014)CrossRefGoogle Scholar
  31. 31.
    Dong, S., Feng, J., Li, Y., Hu, L., Liu, M., Wang, Y., Pi, Y., Sun, J.: Shape-controlled synthesis of BiVO4 hierarchical structures with unique natural-sunlight-driven photocatalytic activity. Appl Catal B Environ. 152-153, 413–424 (2014)CrossRefGoogle Scholar
  32. 32.
    Yu, J., Zhang, Y., Kudo, A.: Synthesis and photocatalytic performances of BiVO4 by ammonia coprecipitation process. J Solid State Chem. 182, 223–228 (2009)CrossRefGoogle Scholar
  33. 33.
    Ma, D., Guan, M., Liu, S., Zhang, Y., Zhang, C., He, Y., Huang, S.: Controlled synthesis of olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity. Dalton Trans. 41, 5581–5586 (2012)CrossRefGoogle Scholar
  34. 34.
    Wang, Y., Long, Y., Zhang, D.: Novel bifunctional V2O5/BiVO4 nanocomposite materials with enhanced antibacterial activity. J Taiwan Inst Chem E. 68, 387–395 (2016)CrossRefGoogle Scholar
  35. 35.
    Weng, S., Chen, B., Xie, L., Zheng, Z., Liu, P.: Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity. J Mater Chem A. 1, 3068–3075 (2013)CrossRefGoogle Scholar
  36. 36.
    Dong, F., Li, Q., Sun, Y., Ho, W.: Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis. ACS Catal. 4, 4341–4350 (2014)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations