Advertisement

Effects of calcination on synthesis of hydroxyapatite derived from oyster shell powders

  • Shih-Ching Wu
  • Hsueh-Chuan Hsu
  • Shih-Kuang Hsu
  • Chien-Pei Tseng
  • Wen-Fu HoEmail author
Research
  • 29 Downloads

Abstract

Oysters abound on the west coast of Taiwan and waste oyster shell production exceeds 0.12 million tons per year. The wide availability and natural-biological origin of oyster shells, containing several trace elements that will remain in the crystalline structure of synthesized HA making its composition alike human bone, will benefit the overall physiological functioning after implantation. In this study, solid-state reactions between oyster shell powders (CaCO3) and dicalcium phosphate dihydrate (DCPD) were performed through ball milling and subsequently calcining at various temperatures (900, 1000, 1100, and 1200 °C) and durations (1, 3, 5, and 10 h). The XRD results showed that we have successfully synthesized high phase-purity HA from DCPD and oyster shell powders through 1 h of milling and then calcined at 1000 °C for 10 h or at 1200 °C for 1 h. The crystallite size of as-prepared HA was around 45.3 nm, while the particle sizes were 2.23 and 2.59 μm, respectively. According to the FTIR analysis of as-prepared HA powders calcined at 1000 °C for 10 h or at 1200 °C for 1 h, the carbonate ion peaks observed for the specimen closely matched those of A- and B-type carbonates. It is worth noting that the final products composed of single-phase HA or biphasic calcium phosphate (HA+β-TCP) can easily be prepared by using different calcination temperatures and times, although we intended to produce pure HA from oyster shell powders.

Keywords

Oyster shell Hydroxyapatite β-Tricalcium phosphate Calcination 

Notes

Funding information

The authors acknowledge the partial financial support of Ministry of Science and Technology of Taiwan (101-2815-C-166-002-E).

References

  1. 1.
    Zhou, H., Lee, J.: Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7, 2769–2781 (2011)CrossRefGoogle Scholar
  2. 2.
    Franco, P.Q., João, C.F.C., Silva, J.C., Borges, J.P.: Electrospun hydroxyapatite fibers from a simple sol-gel system. Mater Lett. 67, 233–236 (2012)CrossRefGoogle Scholar
  3. 3.
    Shpak, A.P., Karbovskii, V.L., Vakh, A.G.: Electronic structure of isomorphically substituted strontium apatite. J Electron Spectrosc. 137–140, 585–589 (2004)CrossRefGoogle Scholar
  4. 4.
    Meejoo, S., Maneeprakorn, W., Winotai, P.: Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochim Acta. 447, 115–120 (2006)CrossRefGoogle Scholar
  5. 5.
    Tadic, D., Peters, F., Epple, M.: Continuous synthesis of amorphous apatites. Biomaterials. 23, 2553–2559 (2002)CrossRefGoogle Scholar
  6. 6.
    Stoch, A., et al.: FTIR absorption–reflection study of biomimetic growth of phosphates on titanium implants. J Mol Struct. 555, 375–382 (2000)CrossRefGoogle Scholar
  7. 7.
    Murugan, R., Ramakrishna, S.: Production of ultra-fine bioresorbable carbonated hydroxyapatite. Acta Biomater. 2, 201–206 (2006)CrossRefGoogle Scholar
  8. 8.
    Kaygili, O., Dorozhkin, S.V., Keser, S.: Synthesis and characterization of Ce-substituted hydroxyapatite by sol–gel method. Mater Sci Eng C. 42, 78–82 (2014)CrossRefGoogle Scholar
  9. 9.
    Gentile, P., Wilcock, C.J., Miller, C.A., Moorehead, R., Hatton, P.V.: Process optimisation to control the physico-chemical characteristics of biomimetic nanoscale hydroxyapatites prepared using wet chemical precipitation. Materials. 8, 2297–2310 (2015)CrossRefGoogle Scholar
  10. 10.
    Yang, Y., Wu, Q., Wang, M., Long, J., Mao, Z., Chen, X.: Hydrothermal synthesis of hydroxyapatite with different morphologies: influence of supersaturation of the reaction system. Cryst Growth Des. 14, 4864–4871 (2014)CrossRefGoogle Scholar
  11. 11.
    Xue, C., Chen, Y., Huang, Y., Zhu, P.: Hydrothermal synthesis and biocompatibility study of highly crystalline carbonated hydroxyapatite nanorods. Nanoscale Res Lett. 10, 316 (2015)CrossRefGoogle Scholar
  12. 12.
    Wu, S.C., Tsou, H.K., Hsu, H.C., Hsu, S.K., Liou, S.P., Ho, W.F.: A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceram Int. 39, 8183–8188 (2013)CrossRefGoogle Scholar
  13. 13.
    Rhee, S.H.: Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials. 23, 1147–1152 (2002)CrossRefGoogle Scholar
  14. 14.
    Wu, S.C., Hsu, H.C., Hsu, S.K., Chang, Y.C., Ho, W.F.: Effects of heat treatment on the synthesis of hydroxyapatite from eggshell powders. Ceram Int. 41, 10718–10724 (2015)CrossRefGoogle Scholar
  15. 15.
    Ho, W.F., Hsu, H.C., Hsu, S.K., Hung, C.W., Wu, S.C.: Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction. Ceram Int. 39, 6467–6473 (2013)CrossRefGoogle Scholar
  16. 16.
    Wu, S.C., Hsu, H.C., Hsu, S.K., Tseng, C.P., Ho, W.F.: Preparation and characterization of hydroxyapatite synthesized from oyster shell powders. Adv Powder Technol. 28, 1154–1158 (2017)CrossRefGoogle Scholar
  17. 17.
    Meng, L.Y., Wang, B., Ma, M.G., Lin, K.L.: The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater Today Chem. 12, 63–83 (2016)CrossRefGoogle Scholar
  18. 18.
    Suchanek, W., Yoshimura, M.: Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 13, 94–117 (1998)CrossRefGoogle Scholar
  19. 19.
    Benaqqa, C., Chevalier, J., Saädaoui, M., Fantozzi, G.: Slow crack growth behavior of hydroxyapatite ceramics. Biomaterials. 26, 6106–6112 (2005)CrossRefGoogle Scholar
  20. 20.
    Roy, D.M., Linnehan, S.K.: Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature. 247, 220–222 (1974)CrossRefGoogle Scholar
  21. 21.
    Rocha, J.H.G., Lemos, A.F., Agathopoulos, S., Kannan, S., Valério, P., Ferreira, J.M.F.: Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. J Biomed Mater Res A. 77, 160–168 (2006)CrossRefGoogle Scholar
  22. 22.
    Terzioğlu, P., Öğüt, H., Kalemtaş, A.: Natural calcium phosphates from fish bones and their potential biomedical applications. Mater. Sci. Eng. C. 91, 899–911 (2018)CrossRefGoogle Scholar
  23. 23.
    Shi, P., Liu, M., Fan, F., Yu, C., Lu, W., Du, M.: Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Mater. Sci. Eng. C. 90, 706–712 (2018)CrossRefGoogle Scholar
  24. 24.
    Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., de Carlos, A., León, B.: Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. C. 32, 478–486 (2012)CrossRefGoogle Scholar
  25. 25.
    Piccirillo, C., et al.: Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones. Mater. Sci. Eng. C. 33, 103–110 (2013)CrossRefGoogle Scholar
  26. 26.
    Ramesh, S., et al.: Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications. Ceram Int. 44, 10525–10530 (2018)CrossRefGoogle Scholar
  27. 27.
    Lemos, A.F., et al.: Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J Eur Ceram Soc. 26, 3639–3646 (2006)CrossRefGoogle Scholar
  28. 28.
    Ferraz, M.P., Monteiro, F.J., Manuel, C.M.: Hydroxyapatite nanoparticles: a review of preparation methodologies. J Appl Biomater Biomech. 2, 74–80 (2004)Google Scholar
  29. 29.
    Linhart, W., et al.: Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res. 54, 162–171 (2001)CrossRefGoogle Scholar
  30. 30.
    Yoon, G.L., Kim, B.T., Kim, B.O., Han, S.H.: Chemical-mechanical characteristics of crushed oyster-shell. Wast Manag. 23, 825–834 (2003)CrossRefGoogle Scholar
  31. 31.
    Landi, E., Tampieri, A., Celotti, G., Sprio, S.: Densification behavior and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc. 20, 2377–2387 (2000)CrossRefGoogle Scholar
  32. 32.
    Fathia, M.H., Hanifia, A., Mortazavi, V.: Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Technol. 202, 536–542 (2008)CrossRefGoogle Scholar
  33. 33.
    Sadat-Shojai, M., Khorasani, M.-T., Jamshidi, A.: Hydrothermal processing of hydroxyapatite nanoparticles—a Taguchi experimental design approach. J Cryst Growth. 361, 73–84 (2012)CrossRefGoogle Scholar
  34. 34.
    Hsu, C.K.: The preparation of biphasic porous calcium phosphate by the mixture of Ca(H2PO4)2·H2O and CaCO3. Mater Chem Phys. 80, 409–420 (2003)CrossRefGoogle Scholar
  35. 35.
    Wu, S.C., Hsu, H.C., Wu, Y.N., Ho, W.F.: Hydroxyapatite synthesized from oyster shell powders by ball milling and heat treatment. Mater Charact. 62, 1180–1187 (2011)CrossRefGoogle Scholar
  36. 36.
    Zhang, X., Vecchio, K.S.: Hydrothermal synthesis of hydroxyapatite rods. J Cryst Growth. 308, 133–140 (2007)CrossRefGoogle Scholar
  37. 37.
    Olszta, M.J., Cheng, X., Jee, S.S., Kumar, R., Kim, Y.Y., Kaufman, M.J., Douglas, E.P., Coger, L.B.: Bone structure and formation: a new perspective. Mater Sci Eng R. 58, 77–116 (2007)CrossRefGoogle Scholar
  38. 38.
    Balasundaram, G., Sato, M., Webster, T.J.: Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials. 27, 2798–2805 (2006)CrossRefGoogle Scholar
  39. 39.
    Langstaff, S., Sayer, M., Smith, T.J., Pugh, S.M., Hesp, S.A., Thomson, W.T.: Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational, design, sample preparation and material characterization. Biomaterials. 20, 1727–1741 (1999)CrossRefGoogle Scholar
  40. 40.
    Sung, Y.M., Kim, D.H.: Crystallization characteristics of yttria- stabilized zirconia/hydroxyapatite composite nanopowder. J Cryst Growth. 254, 411–417 (2003)CrossRefGoogle Scholar
  41. 41.
    Tetsuya, J., Dwight, T.D., Goldberg, V.M.: Comparison of hydroxyapatite and hydroxyapatite tricalcium-phosphate coatings. J Arthrop. 17, 902–909 (2002)CrossRefGoogle Scholar
  42. 42.
    Koutsopoulos, S.: Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res. 62, 600–612 (2002)CrossRefGoogle Scholar
  43. 43.
    Prabakaran, K., Rajeswari, S.: Spectroscopic investigations on the synthesis of nano-hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template. Spectrochim Acta A. 74, 1127–1134 (2009)CrossRefGoogle Scholar
  44. 44.
    Melville, A.J., Harrison, J., Gross, K.A., Forsythe, J.S., Trounson, A.O., Mollard, R.: Mouse embryonic stem cell colonisation of carbonated apatite surfaces. Biomaterials. 27, 615–622 (2006)CrossRefGoogle Scholar
  45. 45.
    Barralet, J.E., Knowles, J.C., Best, S.M., Bonfield, W.: Thermal decomposition of synthesised carbonate hydroxyapatite. J. Mater. Sci. Mater. Med. 13, 529–533 (2002)CrossRefGoogle Scholar
  46. 46.
    Redey, S.A., et al.: Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite and natural calcium carbonate: relationship to surface energies. J Biomed Mater Res. 45, 140–147 (1999)CrossRefGoogle Scholar
  47. 47.
    Barralet, J., Akao, M., Aoki, H.: Dissolution of dense carbonate apatite subcutaneously implanted in Wistar rats. J Biomed Mater Res. 49, 176–182 (2000)CrossRefGoogle Scholar
  48. 48.
    Kalita, S.J., Verma, S.: Nanocrystalline hydroxyapatite bioceramic using microwave radiation: synthesis and characterization. Mater. Sci. Eng. C. 30, 295–303 (2010)CrossRefGoogle Scholar
  49. 49.
    Peña, J., Vallet-Regí, M.: Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique. J Eur Ceram Soc. 23, 1687–1696 (2003)CrossRefGoogle Scholar
  50. 50.
    Enderle, R., Götz-Neunhoeffer, F., Göbbels, M., Müller, F.A., Greil, P.: Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement. Biomaterials. 26, 3379–3384 (2005)CrossRefGoogle Scholar
  51. 51.
    Vallet-Regi, M., Gonzalez-Calbet, J.M.: Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 32, 1–31 (2004)CrossRefGoogle Scholar
  52. 52.
    Siddharthan, A., Seshadri, S.K., Sampat Kumar, T.S.: Microwave accelerated synthesis of nanosized calcium deficient hydroxyapatite. J. Mater. Sci. Mater. Med. 15, 1279–1284 (2004)CrossRefGoogle Scholar
  53. 53.
    Gibson, I.R., Bonfield, W.: Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites. J Mater Sci Mater Med. 13, 685–693 (2002)CrossRefGoogle Scholar
  54. 54.
    Landi, E., Tampieri, A., Celotti, G., Sprio, S., Sandri, M., Logroscino, G.: Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 3, 961–969 (2007)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Department of Dental Technology and Materials ScienceCentral Taiwan University of Science and TechnologyTaichungTaiwan
  2. 2.Department of Materials Science and EngineeringDa-Yeh UniversityChanghuaTaiwan
  3. 3.Department of Chemical and Materials EngineeringNational University of KaohsiungKaohsiungTaiwan

Personalised recommendations