Structural transformations of mechanically alloyed polycrystalline YMnO3-based material for gas sensing application

  • Nor Hapishah AbdullahEmail author
  • Muhammad Syazwan Mustaffa
  • Mohd Nizar Hamidon
  • Raba’ah Syahidah Azis
  • Siti Amaniah Mohd Chachuli


The structural transformation via sintering temperature towards yttrium manganese oxide (YMnO3) behavior will be investigated in this research work. The samples were prepared via mechanical alloying for 12 h using a SPEX8000D mill. The pelletized samples were sintered from 600 to 1250 °C with 50 °C increments respectively. The phase analysis reveals an enhancement of crystallinity with increasing grain size. Orthorhombic YMn2O5 phase was observed to be existing in the as-milled powder, and only hexagonal YMnO3 peaks were observed for ≥ 1000 °C. FESEM micrographs showed a variation starting at 49 nm up to 2.1 μm at largest grain size with sintering temperature increment. The activation energy was explained based on the changes on the event observed in phase analysis. For polarization-electric field (PE) hysteresis reveals YMnO3 is highly leaky ferroelectrics. The remanent polarization (Pr) was observed at 0.13 to 7.12 μC/cm2 and as for electric field (Ec), the value increased from 69.81 to 2742 V/cm generally with increasing grain size. The capacitance values were increased from 20.2 to 435 pF parallel to grain size increment. The behavior of YMnO3 samples series behave based on their difference of crystallinity, microstructure data, and phase purity changes.


Hexagonal YMnO3 Multiferroic Microstructure Mechanical alloying 



The authors also gratefully acknowledge the Materials Synthesis and Characterization Laboratory (MSCL), Functional Devices Laboratory (FDL), Institute of Advanced Technology and Physics Department, Faculty of Science, University Putra Malaysia for their facility to complete this research.

Authors’ contribution

All the authors have contributed to the final manuscript of the present investigation. Nor Hapishah and Muhammad Syazwan and Rabaah Syahidah defined the research topic. Mohd Nizar and Siti Amaniah are involved in the synthesis, characterization, and analysis of the study involving gas sensing properties. Nor Hapishah wrote the manuscript and all the co-authors provided suggestions on the draft of the manuscript. All the authors examined and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.


  1. 1.
    Polat, O., Durmus, Z., Coskun, F.M., Coskun, M., Turut, A.: Engineering the band gap of LaCrO3 doping with transition metals (Co, Pd, and Ir). J. Mater. Sci. 53, 3544–3556 (2018)CrossRefGoogle Scholar
  2. 2.
    Coskun, M., Polat, O., Coskun, F.M., Durmus, Z., Çaglar, M., Türüt, A.: Frequency and temperature dependent electrical and dielectric properties of LaCrO3 and Ir doped LaCrO3 perovskite compounds. J. Alloys Compd. 740, 1012–1023 (2018)CrossRefGoogle Scholar
  3. 3.
    Polat, O., Coskun, M., Coskun, F.M., Durmus, Z., Çaglar, M., Türüt, A.: Os doped YMnO3 multiferroic: a study investigating the electrical properties through tuning the doping level. J. Alloys Compd. 752, 274–288 (2018)CrossRefGoogle Scholar
  4. 4.
    Coşkun, M., Polat, Ö., Coşkun, F.M., Durmuş, Z., Çağlar, M., Türüt, A.: The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites. R. Soc. Chem. Adv. 8, 4634–4648 (2018)Google Scholar
  5. 5.
    Munoz, A., Alonso, J.A., Martınez-Lope, M.J., Casais, M.T., Martınez, J.L., FernandezDıaz, M.T.: Magnetic structure of hexagonal RMnO3 (R=Y, Sc), thermal evolution from neutron powder diffraction data. Phys. Rev. B. 62, 9498 (2000)CrossRefGoogle Scholar
  6. 6.
    Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Tokura, Y., Arima, T.: Magnetic control of ferroelectric polarization. Nature. 426, 55–58 (2003)CrossRefGoogle Scholar
  7. 7.
    Yen, C.Y., Jian, S.R., Lai, Y.S., Juang, J.Y.: Mechanical properties of the hexagonal HoMnO3 thin films by nanoindentation. J. Alloys Compd. 508, 523–527 (2010)CrossRefGoogle Scholar
  8. 8.
    Wu, Y.J., Tang, L.H., Li, H.L., Chen, X.M.: Dielectric and aging behavior of multiferroic YbMnO3 ceramics. J. Alloys Compd. 496, 269–272 (2010)CrossRefGoogle Scholar
  9. 9.
    Lorenz, B., Litvinchuk, P., Gospodinov, M.M., Chu, C.W.: Field-induced reentrant novel phase and a ferroelectric-magnetic order coupling in HoMnO3. Phys. Rev. Lett. 92(8), 087204 (2004)CrossRefGoogle Scholar
  10. 10.
    Hur, N., Park, S., Sharma, P.A., Ahn, J.S., Guha, S., Cheong, S.-W.: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature. 429, 392–395 (2004)CrossRefGoogle Scholar
  11. 11.
    Aken, B.B.V., Palstra, T.T.M., Filippetti, A., Spaldin, N.A.: The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164–170 (2004)CrossRefGoogle Scholar
  12. 12.
    Coure, P., Guinet, F., Peuzin, J.C., Buisson, G., Bertaut, E.F.: Ferroelectric properties of hexagonal orthomanganites of yttrium and rare earths. Proc. Int. Meet. Ferroelectr. (Prague). 1, 332 (1966)Google Scholar
  13. 13.
    Kovalev, A.V., Andreeva, G.T.: Low temperature X-ray study of Ni3B7O13I Boracite. C. R. Acad. Sci. 2, 56 (1956)Google Scholar
  14. 14.
    Bertaut, F., Forrat, F.: Are rare earth orthochromites ferroelectric. C. R. Acad. Sci. 256, (1963)Google Scholar
  15. 15.
    Aken, B.B.V., Meetsma, A., Palstra, T.T.M.: Hexagonal YMnO3. Acta Crystallogr. C. 57, 230 (2001)CrossRefGoogle Scholar
  16. 16.
    N’enert, G.: Orbital ordering and multiferroics. PhD thesis, University of Groningen, the Netherlands. pp. 55–59, 93–96 (2007)Google Scholar
  17. 17.
    Achary, S. N., Jayakumar, O. D., Tyagi, A. K.: 4—multiferroic materials, In: Functional Materials, Elsevier, London, pp. 155–191, ISBN 9780123851420. (2012)Google Scholar
  18. 18.
    Zhirnov, V. A.: On the theory of the domain walls of ferroelectrics Zh. Eksp. Teor. Fiz. 35 1175–80 Zhirnov V A 1958 Sov. Phys. JETP 8 822–7 (Engl. transl.). (1958)Google Scholar
  19. 19.
    Shaw, T.M., Trolier-McKinstry, S., McIntrye, P.C.: The properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci. 30, 263–298 (2000)CrossRefGoogle Scholar
  20. 20.
    Prikockyte, A., Bilc, D., Patrick, H., Catherine, D., Ghosez, P.: First-principles calculations of the structural and dynamical properties of ferroelectric YMnO3. Phys. Rev. B. 84, 214–301 (2011)CrossRefGoogle Scholar
  21. 21.
    Han, T.C., Hsu, W.L., Lee, W.D.: Grain size-dependent magnetic and electric properties in nanosized YMnO3 multiferroic ceramics. Nanoscale Res. Lett. 6, 201 (2011)CrossRefGoogle Scholar
  22. 22.
    Počuča-Nešić, M., MarinkovićStanojević, Z., Branković, Z., Cotič, P., Bernik, S., Góes, M.S., Branković, G.: Mechanochemical synthesis of yttrium manganite. J. Alloys Compd. 552, 451–456 (2013)CrossRefGoogle Scholar
  23. 23.
    Zhang, C., Su, J., Wang, X., Huang, F., Zhang, J., Liu, Y., Zhu, J.: Study on magnetic and dielectric properties of YMnO3 ceramics. J. Alloys Compd. 509, 7738–7741 (2011)CrossRefGoogle Scholar
  24. 24.
    Bergum, K., Okamoto, H., Fjellvåg, H., Grande, T., Einarsrud, M.A., Selbach, S.M.: Synthesis, structure and magnetic properties of nanocrystalline YMnO3. Dalton Trans. 40, 7583–7589 (2011)CrossRefGoogle Scholar
  25. 25.
    Zhang, M.F., Liu, J.M., Liu, Z.G.: Microstructural characterization of nanosized YMnO3 powders: the size effect. Appl. Phys. A Mater. Sci. Process. 79, 1753–1756 (2004)CrossRefGoogle Scholar
  26. 26.
    Goldman, A.: Modern Ferrite Technology, 2nd edn. Springer Science and Business Media, Inc., Pittsburgh (2006)Google Scholar
  27. 27.
    Rout, P.P., Pradhan, S., Das, S.K., Roul, B.K.: Room temperature ferroelectricity in multiferroic HoMnO3 ceramics. Phys. B Condens. Matter. 10, 1016 (2012)Google Scholar
  28. 28.
    Wang, W., Xu, B., Gao, P., Zhang, W., Sun, Y.: Electrical and dielectric properties of HoMnO3 ceramics. Solid State Commun. 177, 7–9 (2014)CrossRefGoogle Scholar
  29. 29.
    Sahu, J.R., Ghosh, A., Rao, C.N.R.: Multiferroic properties of ErMnO3. Mater. Res. Bull. 44, 2123–2126 (2009)CrossRefGoogle Scholar
  30. 30.
    Idza, I.R., Hashim, M., Rodziah, N., Ismayadi, I., Norailiana, A.R.: Influence of evolving microstructure on magnetic-hysteresis characteristics in polycrystalline nickel–zinc ferrite, Ni0.3Zn0.7Fe2O4. Mater. Res. Bull. 47, 1345–1352 (2012)CrossRefGoogle Scholar
  31. 31.
    Chachuli, S.A.M., Hamidon, M.N., Mamat, M.S., Ertugrul, M., Abdullah, N.H.: A hydrogen gas sensor based on TiO2 nanoparticles on alumina substrate. Sensors. 18, 2483 (2018). CrossRefGoogle Scholar
  32. 32.
    Zhou, H.D., Denyszyn, J.C., Goodenough, J.B.: Effect of Ga doping on the multiferroic properties of RMn1−xGaxO3 (R=Ho,Y). Phys. Rev. B. 72, 224401 (2005)CrossRefGoogle Scholar
  33. 33.
    Cullity, B.D.: Introduction to magnetic materials, p. 94. Addison-Wesley, Reading (1974)Google Scholar
  34. 34.
    Hossain, K. M. A., Mahmud, S. T., M. Seki, Kawai, T., Tabata, H.: Structural, electric transport and magnetic properties of Ni1-xZnxFe2O4. J. Magn. Magn. Mater. 312, (2007)Google Scholar
  35. 35.
    Smit, J., Wijn, H.P.J.: Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications (International ed.). Philips' Technical Library, Eindhoven (1965)Google Scholar
  36. 36.
    Coble, R.L.: Sintering crystalline solids. I. Intermediate and final state diffusion models. J. Appl. Phys. 32, 787–792 (1961)CrossRefGoogle Scholar
  37. 37.
    Shinde, T.J., Gadkari, A.B., Vasambekar, P.N.: DC resistivity of Ni-Zn ferrites prepared by oxalate precipitation method. Mater. Chem. Phys. 111, 87–91 (2008)CrossRefGoogle Scholar
  38. 38.
    Chakraborty, S., Pal, M.: Highly efficient novel carbon monoxide gas sensor based on bismuth ferrite nanoparticles for environmental monitoring. New J. Chem. (2018).

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • Nor Hapishah Abdullah
    • 1
    Email author
  • Muhammad Syazwan Mustaffa
    • 2
  • Mohd Nizar Hamidon
    • 1
  • Raba’ah Syahidah Azis
    • 2
    • 3
  • Siti Amaniah Mohd Chachuli
    • 1
    • 4
  1. 1.Functional Devices Laboratory, Institute of Advanced TechnologyUniversiti Putra MalaysiaUPM SerdangMalaysia
  2. 2.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaUPM SerdangMalaysia
  3. 3.Material Synthesis Characterization Laboratory, Institute of Advanced TechnologyUniversiti Putra MalaysiaUPM SerdangMalaysia
  4. 4.Faculty of Electronic and Computer EngineeringUniversiti Teknikal Malaysia MelakaMelakaMalaysia

Personalised recommendations