The effect of aluminum additive on pressureless sintering of SiC

  • H. GhezelbashEmail author
  • A. Zeinali
  • N. Ehsani
  • H. R. Baharvandi


This study was carried out to investigate the effect of Al additive amount on the microstructure development and room temperature mechanical properties of pressureless sintered silicon carbide. Different amounts of Al containing of 1, 2.5, 5, 10, and 15 wt% were added to the base material and pressureless sintering was conducted at 1950 °C for 1 h under argon atmosphere. The formation of the Al4SiC4 phase during conventional sintering was confirmed by X-ray diffraction (XRD) analysis. Microstructure, crystal phases, and density evolution were studied and correlated to Al additions and pre-sintered proceedings. The obtained results show that the addition of Al not only improves sinterability at lower temperature, but also enhances densification and hardness of SiC samples (3.05 g/cm3 and 26.9 GPa respectively).


Silicon carbide Pressureless sintering Aluminum Solid-solution phase 



  1. 1.
    Saddow, S. E., Agarwal, A. K.: Advances in Silicon Carbide Processing and Applications. Artech House (2004)Google Scholar
  2. 2.
    van Rijswijk, W., Shanefield, J.: Effect of carbon as a sintering aid in silicon carbide. J. Am. Ceram. Soc. 73, 148–149 (1990)CrossRefGoogle Scholar
  3. 3.
    Hui, Y., Lingjie, Z., Xingzhong, G., Xiaoyi, Z.: Pressureless sintering of silicon carbide ceramics containing zirconium diboride. Ceram. Int. 37, 2031–2035 (2011)CrossRefGoogle Scholar
  4. 4.
    Magnani, G., Beltram, G., Minoccari, G.L., Pilotti, L., Eur, J.: Enhanced fracture toughness of pressureless-sintered SiC ceramics by addition of graphene. Ceram. Soc. 21, 633–638 (2001)CrossRefGoogle Scholar
  5. 5.
    She, J.H., Ueno, K.: Effect of additive content on liquid-phase sintering on silicon carbide ceramics. Mater. Res. Bull. 34(10/11), 1629–1636 (1999)CrossRefGoogle Scholar
  6. 6.
    Maddrell, E.R., Mater, J.: Pressureless sintering of silicon carbide. J. Mater. Sci. Lett. 6, 486–488 (1987)CrossRefGoogle Scholar
  7. 7.
    Tanaka, H.: “Sintering of silicon carbide” in Silicon Carbide Ceramics—1. Elsevier Science Publishers Ltd, 213–238, (1991)Google Scholar
  8. 8.
    Coppola, J.A., Hawler, H.A., McMurtry, C.H.: US Patent. 4, 123,286 (1978)Google Scholar
  9. 9.
    Storm, R.S., Boecker, W.D.G., Mcmurtry, C.H., Srinivasan, M.: Sintered alpha silicon carbide ceramics for high temperature structural application: status revies and recent development. International Gas Turbine Symposium & Exposition, Beijing, PRC (1985)Google Scholar
  10. 10.
    Biswas, K., Rixecker, G., Aldinger, F.: Gas pressure sintering of SiC sintered with rare-earth-(III)-oxides and their mechanical properties. Ceram. Int. 31, 703–711 (2005)CrossRefGoogle Scholar
  11. 11.
    Lee, S.K., Kim, C.H.: Effect of α-SiC versus β-SiC starting powders on microstructure and fracture toughness of SiC sintered with Al2O3-Y2O3 additives. J. Am. Ceram. Soc. 77, 1655–1658 (1994)CrossRefGoogle Scholar
  12. 12.
    Padture, N.P.: In situ- toughened silicon carbide. J. Am. Ceram. Soc. 77, 519–523 (1994)CrossRefGoogle Scholar
  13. 13.
    Omori, M., Takei, H.: Composite Silicon Carbide sintered shapes and its manufature, U.S. Pat. No. 4502983, Mar 5, 1985Google Scholar
  14. 14.
    Sakai, T., Watanabe, H., Aikawa, T.: Effect of carbon on phase transformation of β-SiC with Al2O3. J. Mater. Sci. Lett. 6, 865–866 (1987)CrossRefGoogle Scholar
  15. 15.
    Stutz, D.H., Prochazka, S., Lorenz, J.: Sintering and microstructure formation of β-silicon carbide. J. Am. Ceram. Soc. 68(9), 479–482 (1985)CrossRefGoogle Scholar
  16. 16.
    Lee, S.H., Guo, S., Tanaka, H., Kurashima, K., Eur, J.: Thermal decomposition, densification and mechanical properties of AlN-SiC(-TiB2) systems with and withoutB, B4C and C additives. Ceram. Soc. 28, 1715–1722 (2008)CrossRefGoogle Scholar
  17. 17.
    Greskovic, C., Rosolowski, J.M.: Sintering of covalent solids. J. Am. Ceram. Soc. 59, 336–343 (1976)CrossRefGoogle Scholar
  18. 18.
    Bocker, W., Haminger, R.: Advancements in sintering of covalent high-performance ceramics. Interceram. 40, 520–525 (1991)Google Scholar
  19. 19.
    Bocker, W., Landfermann, H., Hausner, H.: Sintering of alpha silicon carbide with additions of aluminum. Powder Metall. Int. 11(2), 83 (1979)Google Scholar
  20. 20.
    Tajima, Y., Kingery, W.D.: Solid solubility of aluminum and boron in silicon carbide. J. Am. Ceram. Soc. 65(7), C-27–C-29 (1982)Google Scholar
  21. 21.
    Sahani, P., Karak, S.K., Mishra, B., Chakravarty, D., Chaira, D.: Effect of Al addition on SiC-B4C cermet prepared by pressureless sintering and spark plasma sintering methods. J. Refract. Met. Hard Mater. Int. 57, 31–41 (2016)CrossRefGoogle Scholar
  22. 22.
    Cao, J.J., MoberlyChan, W.J., De Jonghe, L.C., Gilbert, C.J., Ritchie, R.O.: In situ toughened silicon carbide with Al-B-C additions. J. Am. Ceram. Soc. 79, 461–469 (1996)CrossRefGoogle Scholar
  23. 23.
    Cook, S.G., Little, J.A., King, J.E.: Etching and microstructure of engineering ceramics. J. Mater. Charact. 34, 1–8 (1995)CrossRefGoogle Scholar
  24. 24.
    Niihara, K., Morena, R., Hasselman, D.P.H.: Evaluation of kIc of brittle solids by the indentation method with low crack-to-indent rations. J. Mater. Sci. Lett. 1, 13–16 (1982)CrossRefGoogle Scholar
  25. 25.
    Yang, Q.: Role of Al on the microstructure and mechanical properties of hot-pressed ABC-SiC. Materials Sciences Division, California (2001)Google Scholar
  26. 26.
    Viala, J.C., Fortier, P., Bouix, J.: Stable and metastable phase equilibria in the chemical interaction between aluminium and silicon carbide. J. Mater. Sci. 25, 1842–1850 (1990)CrossRefGoogle Scholar
  27. 27.
    Viala, J. C., Peronnet, M., Bosselet, F., Bouix, J.: Chemical compatibility between Al base matrices and light refractory carbide reinforcements. ICCM12 Proceedings, 739, (1999)Google Scholar
  28. 28.
    Ruska, J., Gauckler, L.J., Lorenz, J.L.: The quantitative calculation of SiC polytypes from measurements of X-ray diffraction peak intensities, H.U. Rexer. J. Mater. Sci. 14(8), 2013–2017 (1979)CrossRefGoogle Scholar
  29. 29.
    Hamminger, R., Grathwohl, G., Thummler, F.: Investigation of sintered SiC. J. Mater. Sci. 18, 352–364 (1983)CrossRefGoogle Scholar
  30. 30.
    Williams, R.M., Juterbock, B.N., Shinozaki, S.S., Peters, C.R.: Effect of sintering temperatures on the physical and crystallographic properties of β-SiC. J. Am. Ceram. Soc. 64(10), 1385–1389 (1985)Google Scholar
  31. 31.
    Becher, P.F., Sun, E.Y., Plucknett, K.P., Alexander, K.B., Hsueh, C.H.: Microstructural design of silicon nitride with improved fracture toughness: effect of grain shape and size. J. Am. Ceram. Soc. 81(11), 2821–2830 (1998)CrossRefGoogle Scholar
  32. 32.
    Sun, E.Y., Becher, P.F., Plucknett, K.P., Hsueh, C.H., Alexander, K.B.: Microstructural design of silicon nitride with improved fracture toughness: effect of Yittria and alumina additives. J. Am. Ceram. Soc. 81(11), 2831–2840 (1998)CrossRefGoogle Scholar
  33. 33.
    Padture, N.P., Lawn, B.R.: Toughness properties of a silicon carbide with an in situ induced heterogeneous grain structure. J. Am. Ceram. Soc. 77(10), 2518–2522 (1994)CrossRefGoogle Scholar
  34. 34.
    Kim, J.-Y., Kim, Y.-W., Mitomo, M., Zhan, G.-D., Lee, J.-G.: Microstructure and mechanical properties of alpha-silicon carbide sintered with yttrium-aluminum garnet and Silica. J. Am. Ceram. Soc. 82(2), 441–444 (1999)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • H. Ghezelbash
    • 1
    Email author
  • A. Zeinali
    • 2
  • N. Ehsani
    • 3
  • H. R. Baharvandi
    • 3
  1. 1.Razi Metallurgical Research CenterTehranIran
  2. 2.Faculty of Engineering and TechnologyImam Khomeini International UniversityQazvinIran
  3. 3.Department of Materials Science and EngineeringMUTTehranIran

Personalised recommendations