Saponin-mediated synthesis of hydroxyapatite by hydrothermal method: characteristics, bioactivity, and antimicrobial behavior
- 14 Downloads
Abstract
Hydroxyapatite- (HAp) and saponin-mediated hydroxyapatite (Sap-HAp) were synthesized by hydrothermal method. The rationale behind the choice of saponin is due to its good biological properties and its ability to serve as a surfactant. Calcium nitrate tetrahydrate and ammonium dihydrogen phosphate were used as the precursors and the concentration of saponin was varied from 0.5 to 5 g. Hydrothermal treatment was performed at 200 °C for 5 h. The HAp and Sap-HAp’s were characterized for their morphological features, elemental composition, structural characteristics, and nature of functional groups. In addition, in vitro bioactivity and antimicrobial activity of these samples were also evaluated. HAp exhibits nanorod-shaped morphology with varying length. The length of the nanorods is decreased significantly for Sap-HAp’s prepared using 0.5, 1, and 3 g of saponin. Nevertheless, the particle size distribution is uniform for these samples when compared to that of the HAp. Sap-HAp prepared using 5 g of saponin exhibits a totally different morphology with acicular structure. HAp and Sap-HAp’s consist of phase pure hydroxyapatite while the crystallite size and degree of crystallinity is decreased for the Sap-HAp’s. Fourier-transform infrared spectra confirm the presence of peaks pertaining to hydroxyl, phosphate, and carbonate groups in all the samples while a decrease in intensity of these peaks is observed for Sap-HAp’s when compared to that of the HAp. Sap-HAp’s shows a better bioactivity in terms of apatite formation after immersion in simulated body fluid at 37 °C for 21 days than the HAp. HAp fails to display any measurable zone of growth against S. aureus, P. aeruginosa, and C. albicans. The Sap-HAp’s did not show any sign of inhibition against the growth of S. aureus while they are effective against the growth of P. aeruginosa and C. albicans.
Keywords
Hydroxyapatite Hydrothermal synthesis Saponin Bioactivity Antimicrobial activityNotes
Acknowledgements
The authors gratefully acknowledge the Director, National Centre for Nanoscience and Nanotechnology (NCNSNT), University of Madras, Chennai, India, for providing FE-SEM/EDS facilities for characterization and Mr. N. Karthikeyan, CAS in botany, University of Madras, Chennai, India, for his help in performing the antimicrobial studies.
Supplementary material
References
- 1.Akinpelu, B.A., Igbeneghu, O.A., Awotunde, A.I., Iwalewa, E.O., Oyedapo, O.O.: Antioxidant and antibacterial activities of saponin fractions of Erythropheleum suaveolens (Guill. and Perri.) stem bark extract. Sci Res Essays. 9, 826–833 (2014)CrossRefGoogle Scholar
- 2.Amer, W., Abdelouahdi, K., Ramananarivo, H.R., Zahouily, M., Varma, R.Z., Solhy, A.: Microwave-assisted synthesis of mesoporous nano-hydroxyapatite using surfactant templates. CrystEngComm. 16, 543–549 (2014)CrossRefGoogle Scholar
- 3.Arabski M., Wegierek-Ciuk A., Czerwonka G., Lankoff A., Kaca W.: Effects of saponins against clinical E.coli strains and eukaryotic cell line. J Biomed Biotechnol. 2012, 1–6 (2012)Google Scholar
- 4.Avato, P., Bucci, R., Tava, A., Vitali, C., Rosato, A., Bialy, Z., Jurzysta, M.: Antimicrobial activity of saponins from Medicago sp.: structure-activity relationship. Phytother Res. 20, 454–457 (2006)CrossRefGoogle Scholar
- 5.Bricha, M., Belmamouni, Y., Essassi, E.M., Ferreira, J.M.F., Mabrouk, K.E.: Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanopowders. J Nanosci Nanotechnol. 12, 1–8 (2012)CrossRefGoogle Scholar
- 6.Calderone R.A., Clancy C.J. (Eds): Candida and Candidiasis, 2nd Edn. American Society for Microbiology Press, Washington, ISBN: 9781555815394 (2012)Google Scholar
- 7.Cox, S.C., Jamshidi, P., Grover, L.M., Mallick, K.K.: Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C. 35, 106–114 (2014)CrossRefGoogle Scholar
- 8.Cummings, L.J., Snyder, M.A., Brisack, K.: Protein chromatography on hydroxyapatite columns. Methods Enzymol. 463, 387–404 (2009)CrossRefGoogle Scholar
- 9.Do Carmo, L.S., Cummings, C., Linardi, V.R., Dias, R.S., De Suoza, J.M., De Sena, M.J., Dos Santos, D.A., Shupp, J.W., Pereira, R.K., Jett, M.: A cause of massive staphylococcal food poisoning incident. Foodborne Pathog Dis. 1, 241–246 (2004)CrossRefGoogle Scholar
- 10.Dorozhkin, S.V.: Bioceramics of calcium orthophosphates. Biomaterials. 31, 1465–1485 (2010)CrossRefGoogle Scholar
- 11.Fihri, A., Len, C., Varma, R.S., Solhy: A hydroxyapatite: a review of synthesis, structure and applications in heterogeneous catalysis. Coord Chem Rev. 347, 48–76 (2017)CrossRefGoogle Scholar
- 12.Gao, F., Wang, Q., Gao, N., Yang, Y., Cai, F., Yamane, M., Gao, F., Tanaka, H.: Hydroxyapatite/chemically reduced graphene oxide composite: environment-friendly synthesis and high-performance electrochemical sensing for hydrazine. Biosens Bioelectron. 97, 238–245 (2017)CrossRefGoogle Scholar
- 13.Ghasemi, E., Sillanpää, M.: Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples. J Sep Sci. 38, 164–169 (2015)CrossRefGoogle Scholar
- 14.Giamarellos-Bourboulis, E.J., Grecka, P., Dionyssiou-Asteriou, A., Giamarellou, H.: In vitro interactions of gamma-linolenic acid and arachidonic acid with ceftazoline on multiresistant Pseudomonas aeruginosa. Lipids. 34, 151–152 (1999)CrossRefGoogle Scholar
- 15.Gopiesh Khanna, V., Kannabiran, K.: Antimicrobial activity of saponin fractions of the leaves of Gymnema sylvestre and Eclipta prostrate. World J Microbiol Biotechnol. 24, 2737–2740 (2008)CrossRefGoogle Scholar
- 16.Güçlü-Üstündağ, O., Mazza, G.: Saponins: properties, applications and processing. Crit Rev Food Sci Nutr. 47, 231–258 (2007)CrossRefGoogle Scholar
- 17.Hasani-Sadrabadi, M.M., Mokarram, N., Azami, M., Dashtimoghadam, E., Majedi, F.S., Jacob, K.I.: Preparation and characterization of nanocomposite polyelectrolyte membranes based on Nafion® ionomer and nanocrystalline hydroxyapatite. Polymer. 52, 1286–1296 (2011)CrossRefGoogle Scholar
- 18.Hassan S.M.: Antimicrobial activities of saponin-rich guar meal extract. Ph.D. thesis, Texas A&M University, College Station, USA (2008)Google Scholar
- 19.Hostettmann, K., Marston, A.: Saponins. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
- 20.Iqbal, N., Kadir, M.R.A., Mahmood, N.H., Salim, N., Froemming, G.R.A., Balaji, H.R., Kamarul, T.: Characterization, antibacterial and in vitro compatibility of zinc–silver doped hydroxyapatite nanoparticles prepared through microwave synthesis. Ceram Int. 40, 4507–4513 (2014)CrossRefGoogle Scholar
- 21.Iwamoto, T., Hieda, Y., Kogai, Y.: Effect of hydroxyapatite surface morphology on cell adhesion. Mater Sci Eng C. 69, 1263–1267 (2016)CrossRefGoogle Scholar
- 22.Iyyappan, E., Wilson, P., Sheela, K., Ramya, R.: Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods. Mater Sci Eng C. 63, 554–562 (2016)CrossRefGoogle Scholar
- 23.Jacob, M.C., Favre, M., Bensa, J.C.: Membrane cell permeabilisation with saponin and multiparametric analysis by flow cytometry. Cytometry. 12, 550–558 (1991)CrossRefGoogle Scholar
- 24.Johnson, A.M.: Saponins as agents preventing infection caused by common waterborne pathogens. Ph.D. Thesis, The University of Texas at Arlington, Arlington, Texas, USA (2013)Google Scholar
- 25.Kaczorek, E., Smułek, W., Zdarta, A., Sawczuk, A., Zgoła-Grześkowiak, A.: Influence of saponins on the biodegradation of halogenated phenols, Ecotoxicol. Environ Saf. 311, 127–134 (2016)CrossRefGoogle Scholar
- 26.Kanchana, P., Sekar, C.: EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid. Mater Sci Eng C. 42, 601–607 (2014)CrossRefGoogle Scholar
- 27.Khalid, M., Mujahid, M., Amin, S., Rawat, R.S., Nusair, A., Deen, G.R.: Effect of surfactant and heat treatment on morphology, surface area and crystallinity in hydroxyapatite nanocrystals. Ceram Int. 39, 39–50 (2013)CrossRefGoogle Scholar
- 28.Kim, H.M., Himeno, T., Kokubo, T., Nakamura, T.: Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials. 26, 4366–4373 (2005)CrossRefGoogle Scholar
- 29.Kluytmans, J., Van Belkum, A., Verburgh, H.: Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, underlying mechanisms and associated risks. Clin Microbiol Rev. 10, 505–520 (1997)CrossRefGoogle Scholar
- 30.Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., Yamamuro, T.: Solutions able to reproduce in vivo surface structure changes in bioactive glass ceramic A-W3. J Biomed Mater Res. 24, 721–734 (1990)CrossRefGoogle Scholar
- 31.Koutsopoulos, S.: Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res. 62, 600–612 (2002)CrossRefGoogle Scholar
- 32.Kurien, T., Pearson, R.G., Scammell, B.E.: Bone graft substitutes currently available in orthopaedic practice. Bone Joint J. 95B, 583–597 (2013)CrossRefGoogle Scholar
- 33.Leelavathy, L., Anbu, S., Kandaswamy, M., Karthikeyan, N., Mohan, N.: Synthesis and characterization of a new series of unsymmetrical macrocyclic binuclear vanadyl (IV) complexes: electrochemical, antimicrobial, DNA binding and cleavage studies. Polyhedron. 28, 903–910 (2009)CrossRefGoogle Scholar
- 34.LeGeros, R.Z.: Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 14, 65–88 (1993)CrossRefGoogle Scholar
- 35.Lin, K., Wu, C., Chang, J.: Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. 10, 4071–4102 (2014)CrossRefGoogle Scholar
- 36.Liu, J., Ye, X., Wang, H., Zhu, M., Wang, B., Yan, H.: The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram Int. 29, 629–633 (2003)CrossRefGoogle Scholar
- 37.Liu, Y., Hou, D., Wang, G.: A simple wet chemical synthesis and characterization of hydroxyapatite nanorods. Mater Chem Phys. 86, 69–73 (2004)CrossRefGoogle Scholar
- 38.Lung, C.Y.K., Sarfraz, Z., Habib, A., Khan, A.S., Matinlinna, J.P.: Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite. J Mech Behav Biomed. 54, 283–294 (2016)CrossRefGoogle Scholar
- 39.Ma, T., Xia, Z., Liao, L.: Effect of reaction systems and surfactant additives on the morphology evolution of hydroxyapatite nanorods obtained via a hydrothermal route. Appl Surf Sci. 257, 4384–4388 (2011)CrossRefGoogle Scholar
- 40.Mabilleau, G., Filmon, R., Petrov, P.K., Basle, M.F., Sabokbar, A., Chappard, D.: Cobalt, chromium and nickel affect hydroxyapatite crystal growth in vitro. Acta Biomater. 6, 1555–1560 (2010)CrossRefGoogle Scholar
- 41.Manoj, M., Mangalraj, D., Ponpandian, N., Viswanathan, C.: Core shell hydroxyapatite/Mg nanostructures: surfactant free facile synthesis, characterization and their in-vitro cell viability studies against leukaemia cancer cells (K562). RSC Adv. 5, 48705–48711 (2015)CrossRefGoogle Scholar
- 42.Moghimipour, E., Handali, S.: Saponin: properties, methods of evaluation and applications. Annu Res Rev Biol. 5, 207–220 (2015)CrossRefGoogle Scholar
- 43.Morales, J.M., Iafisco, M., Delgado-López, J.M., Sarda, S., Drouet, C.: Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Charact Mater. 59, 1–46 (2013)CrossRefGoogle Scholar
- 44.Moreira, M.P., Soares, G.D.A., Dentzer, J., Anselme, K., Sena, L.A., Kuznetsov, A., Santos, E.A.: Synthesis of magnesium- and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium. Mater Sci Eng C. 61, 736–743 (2016)CrossRefGoogle Scholar
- 45.Morrissey, R., Rodriguez-Lorenzo, L.M., Gross, K.A.: Influence of ferrous iron incorporation on the structure of hydroxyapatite. J Mater Sci Mater Med. 387–392 (2005, 16)Google Scholar
- 46.Mucalo, M. (ed.): Hydroxyapatite (HAp) for Biomedical Applications. Woodhead Publishing Series in Biomaterials, Elsevier-Woodhead Publishers, Cambridge (2015)Google Scholar
- 47.Oleszek, W.: Saponins. In: Naidu, A.S. (ed.) Natural Food Antimicrobial Systems, pp. 1–30. CRC Press, London (2000)Google Scholar
- 48.Osbourn, A.: Saponins and plant defense—a soap story. Trends Plant Sci. 1, 4–9 (1996)CrossRefGoogle Scholar
- 49.Sahithi, K., Swetha, M., Prabaharan, M., Moorthi, A., Saranya, N., Ramasamy, K., Srinivasan, N., Partridge, N.C., Selvamurugan, N.: Synthesis and characterization of nanoscale-hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications. J Biomed Nanotechnol. 6, 333–339 (2010)CrossRefGoogle Scholar
- 50.Salarian, M., Solati-Hashjin, M., Shafiei, S.S., Goudarzi, A., Salarian, R., Nemati, Z.A.: Surfactant-assisted synthesis and characterization of hydroxyapatite nanorods under hydrothermal conditions. Mater Sci Poland. 27, 961–971 (2009a)Google Scholar
- 51.Salarian, M., Solati-Hashjin, M., Shafiei, S.S., Salarian, R., Nemati, Z.A.: Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol. Ceram Int. 35, 2563–2569 (2009)CrossRefGoogle Scholar
- 52.Samal, K., Das, C., Mohanty, K.: Eco-friendly biosurfactant saponin for the solubilization of cationic and anionic dyes in aqueous system. Dyes Pigments. 140, 100–108 (2017)CrossRefGoogle Scholar
- 53.Sanoj Rejinold, N., Muthunarayanan, M., Muthuchelian, K., Chennazhi, K.P., Nair, S.V., Jayakumar, R.: Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydr Polym. 84, 407–416 (2011)CrossRefGoogle Scholar
- 54.Shiba, K., Motozuka, S., Yamaguchi, T., Ogawa, N., Otsuka, Y., Ohnuma, K., Kataoka, T., Tagaya, M.: Effect of cationic surfactant micelles on hydroxyapatite nanocrystal formation: an investigation into the inorganic−organic interfacial interactions. Cryst Growth Des. 16, 1463–1471 (2016)CrossRefGoogle Scholar
- 55.Singh, B., Singh, J.P., Singh, N., Kaur, A.: Saponins in pulses and their health promoting activities: a review. Food Chem. 223, 540–549 (2017)CrossRefGoogle Scholar
- 56.Soetan, K.O., Oyekunle, M.A., Aiyelaagbe, O.O., Fafunso, M.A.: Evaluation of the antimicrobial activity of saponins extract of Sorghum Bicolor L. Moench. Afr J Biotechnol. 5, 2405–2407 (2006)Google Scholar
- 57.Sparg, S.G., Light, M.E., Van Staden, J.: Biological activities and distribution of plant saponins. J Ethnopharmacol. 94, 219–243 (2004)CrossRefGoogle Scholar
- 58.Subha, B., Varun Prasath, P., Abinaya, R., Kavitha, R.J., Ravichandran, K.: Synthesis and characterization of nano-hydroxyapatite using Sapindus mukorossi extract. AIP Conf Proc. 1665(050127), 1–3 (2015)Google Scholar
- 59.Sundar, S., Mariappan, R., Min, K., Piraman, S.: Facile biosurfactant assisted biocompatible α-Fe2O3 nanorods and nanospheres synthesis, magneto physicochemical characteristics and their enhanced biomolecules sensing ability. RSC Adv. 6, 77133–77142 (2016)CrossRefGoogle Scholar
- 60.Sundar, S., Piraman, S.: Greener saponin induced morphologically controlled various polymorphs of nanostructured iron oxide materials for biosensor applications. RSC Adv. 5, 74408–74415 (2015)CrossRefGoogle Scholar
- 61.Sydnor, E.R.M., Perl, T.M.: Hospital epidemiology and infection control in acute-care settings. Clin Microbiol Rev. 24, 141–173 (2011)CrossRefGoogle Scholar
- 62.Szcześ, A., Hołysz, L., Chibowski, E.: Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci Sci. 249, 321–330 (2017)CrossRefGoogle Scholar
- 63.Taheri, M.M., Abdul Kadir, M.R., Shokuhfar, T., Hamlekhan, A., Assadian, M., Shirdar, M.R., Mirjalilie, A.: Surfactant-assisted hydrothermal synthesis of fluoridated hydroxyapatite nanorods. Ceram Int. 41, 9867–9872 (2015)CrossRefGoogle Scholar
- 64.Tang, J., He, J., Liu, T., Xin, X.: Removal of heavy metals with sequential sludge washing techniques using saponin: optimization conditions, kinetics, removal effectiveness, binding intensity, mobility and mechanism. RSC Adv. 7(3), 3385–33401 (2017)Google Scholar
- 65.Tank, K.P., Chudasama, K.S., Thaker, V.S., Joshi, M.J.: Cobalt-doped nano- hydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies. J Nanopart Res. 15, 1644 (2013)CrossRefGoogle Scholar
- 66.Viswanath, B., Ravishankar, N.: Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone. Biomaterials. 29, 4855–4863 (2008)CrossRefGoogle Scholar
- 67.Wang, X., Zhuang, J., Peng, Q., Li, Y.D.: Liquid–solid–solution synthesis of biomedical hydroxyapatite nanorods. Adv Mater. 18, 2031–2034 (2006b)CrossRefGoogle Scholar
- 68.Wang, Y., Zhang, S., Wei, K., Zhao, N., Chen, J., Wang, X.: Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Mater Lett. 60, 1484–1487 (2006a)CrossRefGoogle Scholar
- 69.Xue, W., Liu, X., Zheng, X., Ding, C.: Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. J Biomed Mater Res A. 74, 553–561 (2005)CrossRefGoogle Scholar
- 70.Yang, C., Wang, J.: Preparation and characterization of collagen microspheres for sustained release of steroidal saponins. Mater Res. 17, 1644–1650 (2014)CrossRefGoogle Scholar
- 71.Yang, Y., Perez-Amodio, S., Barre‘ re-de Groot, F.Y.F., Everts, V., Blitterswijk, C.A.V., Habibovic, P.: The effects of inorganic additives to calcium phosphate on in vitro behaviour of osteoblasts and osteoclasts. Biomaterials. 31, 2976–2989 (2010)CrossRefGoogle Scholar
- 72.Yu, Y.D., Zhu, Y.J., Qi, C., Jiang, Y.Y., Li, H., Wu, J.: Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers. J Colloid Interface Sci. 496, 416–424 (2017)CrossRefGoogle Scholar
- 73.Zhang, H.B., Zhou, K.C., Li, Z.Y., Huang, S.P.: Plate-like hydroxyapatite nanoparticles synthesized by the hydrothermal method. J Phys Chem Solids. 70, 243–248 (2009)CrossRefGoogle Scholar
- 74.Zhang, J., Jiang, D., Zhang, J., Lin, Q., Huang, Z.: Synthesis of organized hydroxyapatite (HA) using triton X-100. Ceram Int. 36, 2441–2447 (2010)CrossRefGoogle Scholar
- 75.Zhang, X., Vecchio, K.S.: Hydrothermal synthesis of hydroxyapatite rods. J Cryst Growth. 308, 133–140 (2007)CrossRefGoogle Scholar
- 76.Zhao, X.Y., Zhu, Y.J., Chen, F., Lu, B.Q., Qi, C., Zhao, J., Wu, J.: Hydrothermal synthesis of hydroxyapatite nanorods and nanowires using riboflavin-59-phosphate monosodium salt as a new phosphorus source and their application in protein adsorption. CrystEngComm. 15, 7926–7935 (2013)CrossRefGoogle Scholar
- 77.Zhou, C., Hong, Y., Zhang, X.: Applications of nanostructured calcium phosphate in tissue engineering. Biomater Sci. 1, 1012–1028 (2013)CrossRefGoogle Scholar
- 78.Zilm, M.E., Chen, L., Sharma, V., McDannald, A., Jain, M., Ramprasad, R., Wei, M.: Hydroxyapatite substituted by transition metals: experiment and theory. Phys Chem Chem Phys. 18, 16457–16465 (2016)CrossRefGoogle Scholar
- 79.Zuo, G., Wei, X., Sun, H., Liu, S., Zong, P., Zeng, X., Shen, Y.: Morphology controlled synthesis of nano-hydroxyapatite using polyethylene glycol as a template. J Alloys Compd. 692, 693–697 (2017)CrossRefGoogle Scholar