Saponin-mediated synthesis of hydroxyapatite by hydrothermal method: characteristics, bioactivity, and antimicrobial behavior

  • Subha Balakrishnan
  • Abinaya Rajendran
  • Ravichandran KulandaiveluEmail author
  • Sankara Narayanan T. S. Nellaiappan


Hydroxyapatite- (HAp) and saponin-mediated hydroxyapatite (Sap-HAp) were synthesized by hydrothermal method. The rationale behind the choice of saponin is due to its good biological properties and its ability to serve as a surfactant. Calcium nitrate tetrahydrate and ammonium dihydrogen phosphate were used as the precursors and the concentration of saponin was varied from 0.5 to 5 g. Hydrothermal treatment was performed at 200 °C for 5 h. The HAp and Sap-HAp’s were characterized for their morphological features, elemental composition, structural characteristics, and nature of functional groups. In addition, in vitro bioactivity and antimicrobial activity of these samples were also evaluated. HAp exhibits nanorod-shaped morphology with varying length. The length of the nanorods is decreased significantly for Sap-HAp’s prepared using 0.5, 1, and 3 g of saponin. Nevertheless, the particle size distribution is uniform for these samples when compared to that of the HAp. Sap-HAp prepared using 5 g of saponin exhibits a totally different morphology with acicular structure. HAp and Sap-HAp’s consist of phase pure hydroxyapatite while the crystallite size and degree of crystallinity is decreased for the Sap-HAp’s. Fourier-transform infrared spectra confirm the presence of peaks pertaining to hydroxyl, phosphate, and carbonate groups in all the samples while a decrease in intensity of these peaks is observed for Sap-HAp’s when compared to that of the HAp. Sap-HAp’s shows a better bioactivity in terms of apatite formation after immersion in simulated body fluid at 37 °C for 21 days than the HAp. HAp fails to display any measurable zone of growth against S. aureus, P. aeruginosa, and C. albicans. The Sap-HAp’s did not show any sign of inhibition against the growth of S. aureus while they are effective against the growth of P. aeruginosa and C. albicans.


Hydroxyapatite Hydrothermal synthesis Saponin Bioactivity Antimicrobial activity 



The authors gratefully acknowledge the Director, National Centre for Nanoscience and Nanotechnology (NCNSNT), University of Madras, Chennai, India, for providing FE-SEM/EDS facilities for characterization and Mr. N. Karthikeyan, CAS in botany, University of Madras, Chennai, India, for his help in performing the antimicrobial studies.

Supplementary material

41779_2019_307_MOESM1_ESM.doc (156 kb)
ESM 1 (DOC 155 kb)


  1. 1.
    Akinpelu, B.A., Igbeneghu, O.A., Awotunde, A.I., Iwalewa, E.O., Oyedapo, O.O.: Antioxidant and antibacterial activities of saponin fractions of Erythropheleum suaveolens (Guill. and Perri.) stem bark extract. Sci Res Essays. 9, 826–833 (2014)CrossRefGoogle Scholar
  2. 2.
    Amer, W., Abdelouahdi, K., Ramananarivo, H.R., Zahouily, M., Varma, R.Z., Solhy, A.: Microwave-assisted synthesis of mesoporous nano-hydroxyapatite using surfactant templates. CrystEngComm. 16, 543–549 (2014)CrossRefGoogle Scholar
  3. 3.
    Arabski M., Wegierek-Ciuk A., Czerwonka G., Lankoff A., Kaca W.: Effects of saponins against clinical E.coli strains and eukaryotic cell line. J Biomed Biotechnol. 2012, 1–6 (2012)Google Scholar
  4. 4.
    Avato, P., Bucci, R., Tava, A., Vitali, C., Rosato, A., Bialy, Z., Jurzysta, M.: Antimicrobial activity of saponins from Medicago sp.: structure-activity relationship. Phytother Res. 20, 454–457 (2006)CrossRefGoogle Scholar
  5. 5.
    Bricha, M., Belmamouni, Y., Essassi, E.M., Ferreira, J.M.F., Mabrouk, K.E.: Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanopowders. J Nanosci Nanotechnol. 12, 1–8 (2012)CrossRefGoogle Scholar
  6. 6.
    Calderone R.A., Clancy C.J. (Eds): Candida and Candidiasis, 2nd Edn. American Society for Microbiology Press, Washington, ISBN: 9781555815394 (2012)Google Scholar
  7. 7.
    Cox, S.C., Jamshidi, P., Grover, L.M., Mallick, K.K.: Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C. 35, 106–114 (2014)CrossRefGoogle Scholar
  8. 8.
    Cummings, L.J., Snyder, M.A., Brisack, K.: Protein chromatography on hydroxyapatite columns. Methods Enzymol. 463, 387–404 (2009)CrossRefGoogle Scholar
  9. 9.
    Do Carmo, L.S., Cummings, C., Linardi, V.R., Dias, R.S., De Suoza, J.M., De Sena, M.J., Dos Santos, D.A., Shupp, J.W., Pereira, R.K., Jett, M.: A cause of massive staphylococcal food poisoning incident. Foodborne Pathog Dis. 1, 241–246 (2004)CrossRefGoogle Scholar
  10. 10.
    Dorozhkin, S.V.: Bioceramics of calcium orthophosphates. Biomaterials. 31, 1465–1485 (2010)CrossRefGoogle Scholar
  11. 11.
    Fihri, A., Len, C., Varma, R.S., Solhy: A hydroxyapatite: a review of synthesis, structure and applications in heterogeneous catalysis. Coord Chem Rev. 347, 48–76 (2017)CrossRefGoogle Scholar
  12. 12.
    Gao, F., Wang, Q., Gao, N., Yang, Y., Cai, F., Yamane, M., Gao, F., Tanaka, H.: Hydroxyapatite/chemically reduced graphene oxide composite: environment-friendly synthesis and high-performance electrochemical sensing for hydrazine. Biosens Bioelectron. 97, 238–245 (2017)CrossRefGoogle Scholar
  13. 13.
    Ghasemi, E., Sillanpää, M.: Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples. J Sep Sci. 38, 164–169 (2015)CrossRefGoogle Scholar
  14. 14.
    Giamarellos-Bourboulis, E.J., Grecka, P., Dionyssiou-Asteriou, A., Giamarellou, H.: In vitro interactions of gamma-linolenic acid and arachidonic acid with ceftazoline on multiresistant Pseudomonas aeruginosa. Lipids. 34, 151–152 (1999)CrossRefGoogle Scholar
  15. 15.
    Gopiesh Khanna, V., Kannabiran, K.: Antimicrobial activity of saponin fractions of the leaves of Gymnema sylvestre and Eclipta prostrate. World J Microbiol Biotechnol. 24, 2737–2740 (2008)CrossRefGoogle Scholar
  16. 16.
    Güçlü-Üstündağ, O., Mazza, G.: Saponins: properties, applications and processing. Crit Rev Food Sci Nutr. 47, 231–258 (2007)CrossRefGoogle Scholar
  17. 17.
    Hasani-Sadrabadi, M.M., Mokarram, N., Azami, M., Dashtimoghadam, E., Majedi, F.S., Jacob, K.I.: Preparation and characterization of nanocomposite polyelectrolyte membranes based on Nafion® ionomer and nanocrystalline hydroxyapatite. Polymer. 52, 1286–1296 (2011)CrossRefGoogle Scholar
  18. 18.
    Hassan S.M.: Antimicrobial activities of saponin-rich guar meal extract. Ph.D. thesis, Texas A&M University, College Station, USA (2008)Google Scholar
  19. 19.
    Hostettmann, K., Marston, A.: Saponins. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  20. 20.
    Iqbal, N., Kadir, M.R.A., Mahmood, N.H., Salim, N., Froemming, G.R.A., Balaji, H.R., Kamarul, T.: Characterization, antibacterial and in vitro compatibility of zinc–silver doped hydroxyapatite nanoparticles prepared through microwave synthesis. Ceram Int. 40, 4507–4513 (2014)CrossRefGoogle Scholar
  21. 21.
    Iwamoto, T., Hieda, Y., Kogai, Y.: Effect of hydroxyapatite surface morphology on cell adhesion. Mater Sci Eng C. 69, 1263–1267 (2016)CrossRefGoogle Scholar
  22. 22.
    Iyyappan, E., Wilson, P., Sheela, K., Ramya, R.: Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods. Mater Sci Eng C. 63, 554–562 (2016)CrossRefGoogle Scholar
  23. 23.
    Jacob, M.C., Favre, M., Bensa, J.C.: Membrane cell permeabilisation with saponin and multiparametric analysis by flow cytometry. Cytometry. 12, 550–558 (1991)CrossRefGoogle Scholar
  24. 24.
    Johnson, A.M.: Saponins as agents preventing infection caused by common waterborne pathogens. Ph.D. Thesis, The University of Texas at Arlington, Arlington, Texas, USA (2013)Google Scholar
  25. 25.
    Kaczorek, E., Smułek, W., Zdarta, A., Sawczuk, A., Zgoła-Grześkowiak, A.: Influence of saponins on the biodegradation of halogenated phenols, Ecotoxicol. Environ Saf. 311, 127–134 (2016)CrossRefGoogle Scholar
  26. 26.
    Kanchana, P., Sekar, C.: EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid. Mater Sci Eng C. 42, 601–607 (2014)CrossRefGoogle Scholar
  27. 27.
    Khalid, M., Mujahid, M., Amin, S., Rawat, R.S., Nusair, A., Deen, G.R.: Effect of surfactant and heat treatment on morphology, surface area and crystallinity in hydroxyapatite nanocrystals. Ceram Int. 39, 39–50 (2013)CrossRefGoogle Scholar
  28. 28.
    Kim, H.M., Himeno, T., Kokubo, T., Nakamura, T.: Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials. 26, 4366–4373 (2005)CrossRefGoogle Scholar
  29. 29.
    Kluytmans, J., Van Belkum, A., Verburgh, H.: Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, underlying mechanisms and associated risks. Clin Microbiol Rev. 10, 505–520 (1997)CrossRefGoogle Scholar
  30. 30.
    Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., Yamamuro, T.: Solutions able to reproduce in vivo surface structure changes in bioactive glass ceramic A-W3. J Biomed Mater Res. 24, 721–734 (1990)CrossRefGoogle Scholar
  31. 31.
    Koutsopoulos, S.: Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res. 62, 600–612 (2002)CrossRefGoogle Scholar
  32. 32.
    Kurien, T., Pearson, R.G., Scammell, B.E.: Bone graft substitutes currently available in orthopaedic practice. Bone Joint J. 95B, 583–597 (2013)CrossRefGoogle Scholar
  33. 33.
    Leelavathy, L., Anbu, S., Kandaswamy, M., Karthikeyan, N., Mohan, N.: Synthesis and characterization of a new series of unsymmetrical macrocyclic binuclear vanadyl (IV) complexes: electrochemical, antimicrobial, DNA binding and cleavage studies. Polyhedron. 28, 903–910 (2009)CrossRefGoogle Scholar
  34. 34.
    LeGeros, R.Z.: Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 14, 65–88 (1993)CrossRefGoogle Scholar
  35. 35.
    Lin, K., Wu, C., Chang, J.: Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. 10, 4071–4102 (2014)CrossRefGoogle Scholar
  36. 36.
    Liu, J., Ye, X., Wang, H., Zhu, M., Wang, B., Yan, H.: The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram Int. 29, 629–633 (2003)CrossRefGoogle Scholar
  37. 37.
    Liu, Y., Hou, D., Wang, G.: A simple wet chemical synthesis and characterization of hydroxyapatite nanorods. Mater Chem Phys. 86, 69–73 (2004)CrossRefGoogle Scholar
  38. 38.
    Lung, C.Y.K., Sarfraz, Z., Habib, A., Khan, A.S., Matinlinna, J.P.: Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite. J Mech Behav Biomed. 54, 283–294 (2016)CrossRefGoogle Scholar
  39. 39.
    Ma, T., Xia, Z., Liao, L.: Effect of reaction systems and surfactant additives on the morphology evolution of hydroxyapatite nanorods obtained via a hydrothermal route. Appl Surf Sci. 257, 4384–4388 (2011)CrossRefGoogle Scholar
  40. 40.
    Mabilleau, G., Filmon, R., Petrov, P.K., Basle, M.F., Sabokbar, A., Chappard, D.: Cobalt, chromium and nickel affect hydroxyapatite crystal growth in vitro. Acta Biomater. 6, 1555–1560 (2010)CrossRefGoogle Scholar
  41. 41.
    Manoj, M., Mangalraj, D., Ponpandian, N., Viswanathan, C.: Core shell hydroxyapatite/Mg nanostructures: surfactant free facile synthesis, characterization and their in-vitro cell viability studies against leukaemia cancer cells (K562). RSC Adv. 5, 48705–48711 (2015)CrossRefGoogle Scholar
  42. 42.
    Moghimipour, E., Handali, S.: Saponin: properties, methods of evaluation and applications. Annu Res Rev Biol. 5, 207–220 (2015)CrossRefGoogle Scholar
  43. 43.
    Morales, J.M., Iafisco, M., Delgado-López, J.M., Sarda, S., Drouet, C.: Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Charact Mater. 59, 1–46 (2013)CrossRefGoogle Scholar
  44. 44.
    Moreira, M.P., Soares, G.D.A., Dentzer, J., Anselme, K., Sena, L.A., Kuznetsov, A., Santos, E.A.: Synthesis of magnesium- and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium. Mater Sci Eng C. 61, 736–743 (2016)CrossRefGoogle Scholar
  45. 45.
    Morrissey, R., Rodriguez-Lorenzo, L.M., Gross, K.A.: Influence of ferrous iron incorporation on the structure of hydroxyapatite. J Mater Sci Mater Med. 387–392 (2005, 16)Google Scholar
  46. 46.
    Mucalo, M. (ed.): Hydroxyapatite (HAp) for Biomedical Applications. Woodhead Publishing Series in Biomaterials, Elsevier-Woodhead Publishers, Cambridge (2015)Google Scholar
  47. 47.
    Oleszek, W.: Saponins. In: Naidu, A.S. (ed.) Natural Food Antimicrobial Systems, pp. 1–30. CRC Press, London (2000)Google Scholar
  48. 48.
    Osbourn, A.: Saponins and plant defense—a soap story. Trends Plant Sci. 1, 4–9 (1996)CrossRefGoogle Scholar
  49. 49.
    Sahithi, K., Swetha, M., Prabaharan, M., Moorthi, A., Saranya, N., Ramasamy, K., Srinivasan, N., Partridge, N.C., Selvamurugan, N.: Synthesis and characterization of nanoscale-hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications. J Biomed Nanotechnol. 6, 333–339 (2010)CrossRefGoogle Scholar
  50. 50.
    Salarian, M., Solati-Hashjin, M., Shafiei, S.S., Goudarzi, A., Salarian, R., Nemati, Z.A.: Surfactant-assisted synthesis and characterization of hydroxyapatite nanorods under hydrothermal conditions. Mater Sci Poland. 27, 961–971 (2009a)Google Scholar
  51. 51.
    Salarian, M., Solati-Hashjin, M., Shafiei, S.S., Salarian, R., Nemati, Z.A.: Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol. Ceram Int. 35, 2563–2569 (2009)CrossRefGoogle Scholar
  52. 52.
    Samal, K., Das, C., Mohanty, K.: Eco-friendly biosurfactant saponin for the solubilization of cationic and anionic dyes in aqueous system. Dyes Pigments. 140, 100–108 (2017)CrossRefGoogle Scholar
  53. 53.
    Sanoj Rejinold, N., Muthunarayanan, M., Muthuchelian, K., Chennazhi, K.P., Nair, S.V., Jayakumar, R.: Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydr Polym. 84, 407–416 (2011)CrossRefGoogle Scholar
  54. 54.
    Shiba, K., Motozuka, S., Yamaguchi, T., Ogawa, N., Otsuka, Y., Ohnuma, K., Kataoka, T., Tagaya, M.: Effect of cationic surfactant micelles on hydroxyapatite nanocrystal formation: an investigation into the inorganic−organic interfacial interactions. Cryst Growth Des. 16, 1463–1471 (2016)CrossRefGoogle Scholar
  55. 55.
    Singh, B., Singh, J.P., Singh, N., Kaur, A.: Saponins in pulses and their health promoting activities: a review. Food Chem. 223, 540–549 (2017)CrossRefGoogle Scholar
  56. 56.
    Soetan, K.O., Oyekunle, M.A., Aiyelaagbe, O.O., Fafunso, M.A.: Evaluation of the antimicrobial activity of saponins extract of Sorghum Bicolor L. Moench. Afr J Biotechnol. 5, 2405–2407 (2006)Google Scholar
  57. 57.
    Sparg, S.G., Light, M.E., Van Staden, J.: Biological activities and distribution of plant saponins. J Ethnopharmacol. 94, 219–243 (2004)CrossRefGoogle Scholar
  58. 58.
    Subha, B., Varun Prasath, P., Abinaya, R., Kavitha, R.J., Ravichandran, K.: Synthesis and characterization of nano-hydroxyapatite using Sapindus mukorossi extract. AIP Conf Proc. 1665(050127), 1–3 (2015)Google Scholar
  59. 59.
    Sundar, S., Mariappan, R., Min, K., Piraman, S.: Facile biosurfactant assisted biocompatible α-Fe2O3 nanorods and nanospheres synthesis, magneto physicochemical characteristics and their enhanced biomolecules sensing ability. RSC Adv. 6, 77133–77142 (2016)CrossRefGoogle Scholar
  60. 60.
    Sundar, S., Piraman, S.: Greener saponin induced morphologically controlled various polymorphs of nanostructured iron oxide materials for biosensor applications. RSC Adv. 5, 74408–74415 (2015)CrossRefGoogle Scholar
  61. 61.
    Sydnor, E.R.M., Perl, T.M.: Hospital epidemiology and infection control in acute-care settings. Clin Microbiol Rev. 24, 141–173 (2011)CrossRefGoogle Scholar
  62. 62.
    Szcześ, A., Hołysz, L., Chibowski, E.: Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci Sci. 249, 321–330 (2017)CrossRefGoogle Scholar
  63. 63.
    Taheri, M.M., Abdul Kadir, M.R., Shokuhfar, T., Hamlekhan, A., Assadian, M., Shirdar, M.R., Mirjalilie, A.: Surfactant-assisted hydrothermal synthesis of fluoridated hydroxyapatite nanorods. Ceram Int. 41, 9867–9872 (2015)CrossRefGoogle Scholar
  64. 64.
    Tang, J., He, J., Liu, T., Xin, X.: Removal of heavy metals with sequential sludge washing techniques using saponin: optimization conditions, kinetics, removal effectiveness, binding intensity, mobility and mechanism. RSC Adv. 7(3), 3385–33401 (2017)Google Scholar
  65. 65.
    Tank, K.P., Chudasama, K.S., Thaker, V.S., Joshi, M.J.: Cobalt-doped nano- hydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies. J Nanopart Res. 15, 1644 (2013)CrossRefGoogle Scholar
  66. 66.
    Viswanath, B., Ravishankar, N.: Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone. Biomaterials. 29, 4855–4863 (2008)CrossRefGoogle Scholar
  67. 67.
    Wang, X., Zhuang, J., Peng, Q., Li, Y.D.: Liquid–solid–solution synthesis of biomedical hydroxyapatite nanorods. Adv Mater. 18, 2031–2034 (2006b)CrossRefGoogle Scholar
  68. 68.
    Wang, Y., Zhang, S., Wei, K., Zhao, N., Chen, J., Wang, X.: Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Mater Lett. 60, 1484–1487 (2006a)CrossRefGoogle Scholar
  69. 69.
    Xue, W., Liu, X., Zheng, X., Ding, C.: Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. J Biomed Mater Res A. 74, 553–561 (2005)CrossRefGoogle Scholar
  70. 70.
    Yang, C., Wang, J.: Preparation and characterization of collagen microspheres for sustained release of steroidal saponins. Mater Res. 17, 1644–1650 (2014)CrossRefGoogle Scholar
  71. 71.
    Yang, Y., Perez-Amodio, S., Barre‘ re-de Groot, F.Y.F., Everts, V., Blitterswijk, C.A.V., Habibovic, P.: The effects of inorganic additives to calcium phosphate on in vitro behaviour of osteoblasts and osteoclasts. Biomaterials. 31, 2976–2989 (2010)CrossRefGoogle Scholar
  72. 72.
    Yu, Y.D., Zhu, Y.J., Qi, C., Jiang, Y.Y., Li, H., Wu, J.: Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers. J Colloid Interface Sci. 496, 416–424 (2017)CrossRefGoogle Scholar
  73. 73.
    Zhang, H.B., Zhou, K.C., Li, Z.Y., Huang, S.P.: Plate-like hydroxyapatite nanoparticles synthesized by the hydrothermal method. J Phys Chem Solids. 70, 243–248 (2009)CrossRefGoogle Scholar
  74. 74.
    Zhang, J., Jiang, D., Zhang, J., Lin, Q., Huang, Z.: Synthesis of organized hydroxyapatite (HA) using triton X-100. Ceram Int. 36, 2441–2447 (2010)CrossRefGoogle Scholar
  75. 75.
    Zhang, X., Vecchio, K.S.: Hydrothermal synthesis of hydroxyapatite rods. J Cryst Growth. 308, 133–140 (2007)CrossRefGoogle Scholar
  76. 76.
    Zhao, X.Y., Zhu, Y.J., Chen, F., Lu, B.Q., Qi, C., Zhao, J., Wu, J.: Hydrothermal synthesis of hydroxyapatite nanorods and nanowires using riboflavin-59-phosphate monosodium salt as a new phosphorus source and their application in protein adsorption. CrystEngComm. 15, 7926–7935 (2013)CrossRefGoogle Scholar
  77. 77.
    Zhou, C., Hong, Y., Zhang, X.: Applications of nanostructured calcium phosphate in tissue engineering. Biomater Sci. 1, 1012–1028 (2013)CrossRefGoogle Scholar
  78. 78.
    Zilm, M.E., Chen, L., Sharma, V., McDannald, A., Jain, M., Ramprasad, R., Wei, M.: Hydroxyapatite substituted by transition metals: experiment and theory. Phys Chem Chem Phys. 18, 16457–16465 (2016)CrossRefGoogle Scholar
  79. 79.
    Zuo, G., Wei, X., Sun, H., Liu, S., Zong, P., Zeng, X., Shen, Y.: Morphology controlled synthesis of nano-hydroxyapatite using polyethylene glycol as a template. J Alloys Compd. 692, 693–697 (2017)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • Subha Balakrishnan
    • 1
  • Abinaya Rajendran
    • 1
  • Ravichandran Kulandaivelu
    • 1
    Email author
  • Sankara Narayanan T. S. Nellaiappan
    • 2
  1. 1.Department of Analytical ChemistryUniversity of MadrasChennaiIndia
  2. 2.Department of Dental Biomaterials and Institute of Biodegradable Materials, Institute of Oral Biosciences and Brain Korea 21 Plus project, School of DentistryChonbuk National UniversityJeonjuSouth Korea

Personalised recommendations