Journal of the Australian Ceramic Society

, Volume 55, Issue 3, pp 639–644 | Cite as

Enhanced structural, adsorption, and antibacterial properties of ZnO nanoparticles

  • Vahid Abbasi-Chianeh
  • Behrooz Bostani
  • Zahra Noroozi
  • Mohammad Reza Akbarpour
  • Fariba YahyaviEmail author


This study focuses on the development of pure and doped zinc oxide by sol-gel method synthesis using various weight concentrations of dopant (1, 2, 3, and 4 wt%). The scanning electron microscopy and X-ray diffraction based on structural and morphological analyses were performed. The synthesized nanoparticles retained the wurtzite hexagonal structure. From TEM studies, pure and doped ZnO showed a nanorod like morphology. The maximum adsorption capacity of pure and doped ZnO nanoparticles for Pb(II) was found to be 27.4 mg g−1 at 328 K. This study was also done to look for the antibacterial potentials of pure and doped zinc oxide nanoparticles. The bacterial growth concentration of pure and doped ZnO nanoparticles was 4000 μg/ml. Results showed that the doped ZnO possessed a greater antibacterial effect than the pure ZnO.


Nanoparticles Doping Antibacterial Adsorption 


  1. 1.
    Divya, M.J., Sowmia, C., Joona, K., Dhanya, K.P.: Synthesis of zinc oxide nanoparticle from Hibiscus rosa-sinensis leaf extract and investigation of its antimicrobial activity. Res. J. Pharm. Biol. Chem. 4(2), 1137 (2013)Google Scholar
  2. 2.
    Ilkhechi, N.N., Ahmadi, A., Kaleji, B.K.: Optical and structural properties of nanocrystalline anatase powders doped by Zr, Si and Cu at high temperature. Opt. Quant. Electron. 47(8), 2423 (2015)CrossRefGoogle Scholar
  3. 3.
    Pécou, E., Maass, A., Remenik, D., Briche, J., Gonzalez, M.: A mathematical model for copper homeostasis in Enter occurs hired. Math. Biosci. 203, 222 (2006)CrossRefGoogle Scholar
  4. 4.
    Divyapriya, S., Sowmia, C., Sasikala, S.: Synthesis of zinc oxide nanoparticles and antimicrobial activity of Murray konini. World J. Pharm. Pharm. Sci. 3(12), 1635 (2014)Google Scholar
  5. 5.
    Ilkhechi, N.N., Alijani, M., Kaleji, B.K.: Optical and structural properties of TiO2 nanopowders with Co/Ce doping at various temperature. Opt. Quant. Electron. 48(2), 148 (2016)CrossRefGoogle Scholar
  6. 6.
    Jing, Z.H, Zhan, J.H: Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater. 204547, (2008)Google Scholar
  7. 7.
    Abbasi-Chianeh, V., Mohammadzadeh, A., Ilkhechi, N.N.: Modeling the response of optical and hydrophobic properties of codoped TiO2 thin films. J. Aust. Ceram. Soc. 1–8Google Scholar
  8. 8.
    Lakshmi, J.V., Sharath, R., Chandraprabha, M.N., Neelufar, E.: Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles. J. Biochem. Technol. 3(5), S151 (2013)Google Scholar
  9. 9.
    Krishna, B.R., Ranjit, T.K., Adhar, C.M.: Ag@ AgI, core@ shell structure in agars matrix as hybrid: synthesis, characterization, and antimicrobial activity. Langumir. 27, 324020 (2011)Google Scholar
  10. 10.
    Ilkhechi, N.N., Kaleji, B.K.: Effect of Cu2+, Si4+ and Zr4+ dopant on structural, optical and photocatalytic properties of titania nano powders. Opt. Quant. Electron. 48(7), 347 (2016)CrossRefGoogle Scholar
  11. 11.
    Liu, Y.: Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol. 107, 1193 (2009)CrossRefGoogle Scholar
  12. 12.
    Nair, S.: Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Mater. Sci. Mater. Med. 20, S235 (2009)CrossRefGoogle Scholar
  13. 13.
    Ilkhechi, N.N., Koozegar-Kaleji, B., Dousi, F.: Optical and structural properties of tenorite nanopowders doped by Si and Zr. Opt. Quant. Electron. 47(3), 633 (2015)CrossRefGoogle Scholar
  14. 14.
    Sharma, N., Kumar, J., Thakur, S., Sharma, S., Shrivastava, V.: Antibacterial study of silver doped zinc oxide nanoparticles against Staphylococcus aureus and Bacillus subtitles. J. Drug Invent. Today. 5(1), 50 (2013)CrossRefGoogle Scholar
  15. 15.
    Yousef, J.M., Danial, E.N.: In Vitro Antibacterial Activity and Minimum Inhibitory Concentration of Zinc Oxide and Nano-particle Zinc oxide Against Pathogenic Strains. J. Health Sci. 2, 38 (2012)Google Scholar
  16. 16.
    Ilkhechi, N.N., Dousi, F., Kaleji, B.K., Salahi, E.: Optical and structural properties of TiO2 nanocomposite doped by Si and Cu at high temperature. Opt. Quant. Electron. 47(7), 1751 (2015)CrossRefGoogle Scholar
  17. 17.
    Tayel, A.A., El-tras, W.F., Moussa, S., EL-baz, A.F., Mahrous, H., Salem, M.F., Brimer, L.: Antibacterial action of zinc oxide nanoparticles against food borne pathogens. J. Food Saf. 31(2), 211 (2011)CrossRefGoogle Scholar
  18. 18.
    Ilkhechi, N.N., Kaleji, B.K.: Optical and Structure Properties of Nanocrystalline Titania Powders with Cu Dopant. SILICON. 9(2), 285–291 (2017)CrossRefGoogle Scholar
  19. 19.
    Chen, Z.: A sol–gel method for preparing ZnO quantum dots with strong blue emission. J. Lumin. 1312072 (2011)Google Scholar
  20. 20.
    Ilkhechi, N.N., Ghobadi, N., Yahyavi, F.: Enhanced optical and hydrophilic properties of V and La co-doped ZnO thin films. Opt. Quant. Electron. 49(1), 39 (2017)CrossRefGoogle Scholar
  21. 21.
    Ilkhechi, N.N., Ghorbani, M., Mozammel, M., Khajeh, M.: The optical, photo catalytic behavior and hydrophilic properties of silver and tin co doped TiO2 thin films using sol–gel method. J. Mater. Sci. Mater. Electron. 28(4), 3571 (2017)CrossRefGoogle Scholar
  22. 22.
    Ilkhechi, N.N., Ghobadi, N., Akbarpour, M.R.: Enhanced optical and photo catalytic properties of V and La co doped TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. 28(9), 6426 (2017)CrossRefGoogle Scholar
  23. 23.
    Xie, Y., He, Y., Irwin, P., Jin, T., Shi, X.: Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejune. J. Appl. Environ. Microbiol. 77(7), 2325 (2011)CrossRefGoogle Scholar
  24. 24.
    Kolekar, T.V., Bandgar, S.S., Shirguppikar, S.S., Ganachari, V.S.: Synthesis and characterization of ZnO nanoparticles for efficient gas sensors. Arch. Appl. Sci. Res. 5(6), 20 (2013)Google Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • Vahid Abbasi-Chianeh
    • 1
  • Behrooz Bostani
    • 2
  • Zahra Noroozi
    • 3
  • Mohammad Reza Akbarpour
    • 4
  • Fariba Yahyavi
    • 5
    Email author
  1. 1.Faculty of Mining and Materials EngineeringUrmia University of TechnologyUrmiaIran
  2. 2.Department of Chemical and Materials EngineeringBuein Zahra Technical UniversityBuein ZahraIran
  3. 3.Department of Metallurgy and Materials Engineering, Faculty of Technology and EngineeringImam Khomeini International UniversityQazvinIran
  4. 4.Department of Materials Engineering, Faculty of EngineeringUniversity of MaraghehMaraghehIran
  5. 5.Department of Basic ScienceSchool of Veterinary Medicine Ferdowsi University of MashhadMashhadIran

Personalised recommendations