Neem (Azadirachta indica) gum assisted sol–gel synthesis and characterization of ZnO nanoparticles for photocatalytic application

  • S. Suganya
  • S. VivekanandhanEmail author


Neem (Azadirachta indica) gum-assisted sol–gel process was newly explored for the synthesis of ZnO nanoparticles. Neem gum plays a vital role as an effective chelating agent for Zn2+ ions, which enables the uniform distribution of metal ions throughout the gum matrix, which was identified by FTIR and SEM-EDX analysis. Thermal decomposition of the dried gel results in the formation of ultrafine ZnO nanoparticles as low as 450 °C. FTIR and XRD analyses confirm the formation of phase pure ZnO nanoparticles without any organic residues. TEM investigation identified the formation of poly-dispersed ZnO nanoparticles with the size range between 30 and 110 nm. Its optical activity was analyzed employing UV–Vis and PL studies. The synthesized ZnO nanoparticles showed excellent photocatalytic performance in degrading trypan blue organic dye under the exposure of UV radiation and ~ 97% of the trypan blue was degraded in 180 min.


Azadirachta indica gum Combustion synthesis ZnO nanoparticles Photo catalysis 



The authors express sincere thanks to Sophisticated Test and Instrumentation Centre (STIC), Cochin University of Science and Technology, Cochin, Kerala, India, and International Research Centre (IRC), Kalasalingam University, Tamilnadu, India, for providing their valuable support for various analytical services. SV acknowledges University Grants Commission (UGC) for the financial support for this research activity through the Minor Research Project (MRP/UGC-SERO-Proposal No. 1593).


  1. 1.
    Ümit, Ö., Hofstetter, D., Morkoc, H.: ZnO devices and applications: a review of current status and future prospects. Proc. IEEE. 98(7), 1255–1268 (2010)CrossRefGoogle Scholar
  2. 2.
    Kołodziejczak-Radzimska, A., Jesionowski, T.: Zinc oxide—from synthesis to application: a review. Materials. 7(4), 2833–2881 (2014)CrossRefGoogle Scholar
  3. 3.
    Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., Avrutin, V., Cho, S.-J., Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Physiol. 98(4), 041301 (2005)CrossRefGoogle Scholar
  4. 4.
    Giri, P., Bhattacharyya, S., Singh, D.K., Kesavamoorthy, R., Panigrahi, B., Nair, K.: Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. J. Appl. Physiol. 102(9), 093515 (2007)CrossRefGoogle Scholar
  5. 5.
    Usui, H., Shimizu, Y., Sasaki, T., Koshizaki, N.: Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J. Phys. Chem. B. 109(1), 120–124 (2005)CrossRefGoogle Scholar
  6. 6.
    Minami, T., Nanto, H., Takata, S.: Highly conductive and transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. 23(5A), L280 (1984)CrossRefGoogle Scholar
  7. 7.
    Vafaee, M., Ghamsari, M.S.: Preparation and characterization of ZnO nanoparticles by a novel sol–gel route. Mater. Lett. 61(14), 3265–3268 (2007)CrossRefGoogle Scholar
  8. 8.
    Tang, X., Choo, E.S.G., Li, L., Ding, J., Xue, J.: One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications. Langmuir. 25(9), 5271–5275 (2009)CrossRefGoogle Scholar
  9. 9.
    Devi, S.L., Kumar, K.S., Balakrishnan, A.: Rapid synthesis of pure and narrowly distributed Eu doped ZnO nanoparticles by solution combustion method. Mater. Lett. 65(1), 35–37 (2011)CrossRefGoogle Scholar
  10. 10.
    Rai, P., Yu, Y.-T.: Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application. Sensors Actuators B Chem. 173, 58–65 (2012)CrossRefGoogle Scholar
  11. 11.
    Zak, A.K., Wang, H., Yousefi, R., Golsheikh, A.M., Ren, Z.: Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrason. Sonochem. 20(1), 395–400 (2013)CrossRefGoogle Scholar
  12. 12.
    Wang, Z.L.: Nanostructures of zinc oxide. Mater. Today. 7(6), 26–33 (2004)CrossRefGoogle Scholar
  13. 13.
    Thongsuriwong, K., Amornpitoksuk, P., Suwanboon, S.: Structure, morphology, photocatalytic and antibacterial activities of ZnO thin films prepared by sol–gel dip-coating method. Adv. Powder Technol. 24(1), 275–280 (2013)CrossRefGoogle Scholar
  14. 14.
    Vivekanandhan, S., Venkateswarlu, M., Satyanarayana, N.: Synthesis and characterization of nanocrystalline LiNi 0.5 Co 0.5 VO 4 powders by citric acid assisted sol–gel combustion process. J. Alloys Compd. 462(1), 328–334 (2008)CrossRefGoogle Scholar
  15. 15.
    Vivekanandhan, S., Venkateswarlu, M., Carnahan, D., Misra, M., Mohanty, A., Satyanarayana, N.: Functionalization of single-walled carbon nanotubes with silver nanoparticles using Tecoma stans leaf extract. Phys. E. 44(7), 1725–1729 (2012)CrossRefGoogle Scholar
  16. 16.
    Maensiri, S., Labuayai, S., Laokul, P., Klinkaewnarong, J., Swatsitang, E.: Structure and optical properties of CeO2 nanoparticles prepared by using lemongrass plant extract solution. Jpn. J. Appl. Phys. 53(6S), 06JG14 (2014)CrossRefGoogle Scholar
  17. 17.
    Prasad, K., Jha, A.K.: Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J. Colloid Interface Sci. 342(1), 68–72 (2010)CrossRefGoogle Scholar
  18. 18.
    Vivekanandhan, S., Misra, M., Mohanty, A.K.: Microscopic, structural, and electrical characterization of the carbonaceous materials synthesized from various lignin feedstocks. J. Appl. Polym. Sci. 132(15), (2015)Google Scholar
  19. 19.
    Le Corre, D., Bras, J., Dufresne, A.: Starch nanoparticles: a review. Biomacromolecules. 11(5), 1139–1153 (2010)CrossRefGoogle Scholar
  20. 20.
    Vishnukumar, P., Vivekanandhan, S., Misra, M., Mohanty, A.: Recent advances and emerging opportunities in phytochemical synthesis of ZnO nanostructures. Mater. Sci. Semicond. Process. 80, 143–161 (2018)CrossRefGoogle Scholar
  21. 21.
    Madhumitha, G., Elango, G., Roopan, S.M.: Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Appl. Microbiol. Biotechnol. 100(2), 571–581 (2016)CrossRefGoogle Scholar
  22. 22.
    Fu, L., Fu, Z.: Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram. Int. 41(2), 2492–2496 (2015)CrossRefGoogle Scholar
  23. 23.
    Dobrucka, R., Długaszewska, J.: Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci. 23(4), 517–523 (2016)CrossRefGoogle Scholar
  24. 24.
    Jafarirad, S., Mehrabi, M., Divband, B., Kosari-Nasab, M.: Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach. Mater. Sci. Eng. C. 59, 296–302 (2016)CrossRefGoogle Scholar
  25. 25.
    Yuvakkumar, R., Suresh, J., Nathanael, A.J., Sundrarajan, M., Hong, S.: Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater. Sci. Eng. C. 41, 17–27 (2014)CrossRefGoogle Scholar
  26. 26.
    Kavyashree, D., Kumari, R.A., Nagabhushana, H., Sharma, S., Vidya, Y., Anantharaju, K., Prasad, B.D., Prashantha, S., Lingaraju, K., Rajanaik, H.: Orange red emitting Eu 3+ doped zinc oxide nanophosphor material prepared using Guizotia abyssinica seed extract: structural and photoluminescence studies. J. Lumin. 167, 91–100 (2015)CrossRefGoogle Scholar
  27. 27.
    Wang, D., Liu, H., Ma, Y., Qu, J., Guan, J., Lu, N., Lu, Y., Yuan, X.: Recycling of hyper-accumulator: synthesis of ZnO nanoparticles and photocatalytic degradation for dichlorophenol. J. Alloys Compd. 680, 500–505 (2016)CrossRefGoogle Scholar
  28. 28.
    Qu, J., Luo, C., Cong, Q., Yuan, X.: Recycling of the hyperaccumulator Brassica juncea L.: synthesis of carbon nanotube-Cu/ZnO nanocomposites. J. Mater. Cycles Waste Manag. 16(1), 162–166 (2014)CrossRefGoogle Scholar
  29. 29.
    Cong, Q., Zhang, Q., Yuan, X., Luo, C., Qu, J.: Synthesis of nanomaterials from Physalis alkekengi L. and their removal of bisphenol a in water. J. Environ. Eng. 140(2), 04013006 (2013)CrossRefGoogle Scholar
  30. 30.
    Darroudi, M., Sabouri, Z., Oskuee, R.K., Zak, A.K., Kargar, H., Hamid, M.H.N.A.: Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceram. Int. 39(8), 9195–9199 (2013)CrossRefGoogle Scholar
  31. 31.
    Liu, T.-T., Wang, M.-H., Zhang, H.-P., Zhao, Z.-Y.: Sol–gel synthesis of doped nanocrystalline ZnO powders using xanthan gum and varistor properties study. J. Mater. Sci. Mater. Electron. 26(11), 9056–9062 (2015)CrossRefGoogle Scholar
  32. 32.
    Fardood, S.T., Ramazani, A., Moradi, S., Asiabi, P.A.: Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. J. Mater. Sci. Mater. Electron. 28(18), 13596–13601 (2017)CrossRefGoogle Scholar
  33. 33.
    Socrates, G.: Infrared and Raman characteristic group frequencies: tables and charts. Wiley, England (2004)Google Scholar
  34. 34.
    Chung, I.-M., Rahuman, A.A., Marimuthu, S., Kirthi, A.V., Anbarasan, K., Rajakumar, G.: An investigation of the cytotoxicity and caspase-mediated apoptotic effect of green synthesized zinc oxide nanoparticles using Eclipta prostrata on human liver carcinoma cells. Nano. 5(3), 1317–1330 (2015)Google Scholar
  35. 35.
    Singh, R.P., Shukla, V.K., Yadav, R.S., Sharma, P.K., Singh, P.K., Pandey, A.C.: Biological approach of zinc oxide nanoparticles formation and its characterization. Adv. Mater. Lett. 2(4), 313–317 (2011)CrossRefGoogle Scholar
  36. 36.
    Kaviyarasu, K., Magdalane, C.M., Kanimozhi, K., Kennedy, J., Siddhardha, B., Reddy, E.S., Rotte, N.K., Sharma, C.S., Thema, F., Letsholathebe, D.: Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method. J. Photochem. Photobiol. B. 173, 466–475 (2017)CrossRefGoogle Scholar
  37. 37.
    Vivekanandhan, S., Schreiber, M., Mason, C., Mohanty, A.K., Misra, M.: Maple leaf (Acer sp.) extract mediated green process for the functionalization of ZnO powders with silver nanoparticles. Colloids Surf. B. 113, 169–175 (2014)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  1. 1.Sustainable Materials and Nanotechnology Lab (SMNL), Department of PhysicsV.H.N.S.N. CollegeVirudhunagarIndia

Personalised recommendations