Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 281–288 | Cite as

The effects of aluminum and aluminum borate addition on the properties of MgO-C refractories

  • M. Heidari Bagherabadi
  • R. NaghizadehEmail author
  • H. R. Rezaie
  • M. Fallah Vostakola


Aluminum and aluminum borate powders were used as antioxidants to increase oxidation resistance of magnesia-graphite refractories. Bulk density and cold crushing strength of bodies without additives and also containing 4 and 6 wt.% aluminum and aluminum borate were investigated. XRD results of the samples containing aluminum borate and aluminum after firing in coke bed and also oxidized atmosphere (in air) at 1200 and 1400 °C showed that spinel (MgAl2O4) was formed. In addition to the high refractoriness, this phase can improve strength and fill the porosities of refractories. A liquid phase was formed in the bodies containing aluminum borate which developed a coating on the graphite surfaces, and can stimulate the formation of spinel. The results of oxidation resistance tests, which were measured according to weight percent of the samples, showed that the oxidation resistance of the bodies containing aluminum borate was better than that of the bodies containing aluminum.


MgO-C refractories Aluminum borate Mechanical properties Oxidation resistance 


  1. 1.
    Franklin, S.A., Tucker, B.J.S.: Hot strength and thermal shock resistance of magnesia carbon refractories. Br. Ceram. Trans. 94, 151–156 (1995)Google Scholar
  2. 2.
    Pal, S., Bandyopadhyay, A.K., Pal, P.G.: Treatment of graphite for oxidation resistant mag-carbon refractories. Trans. Indian Ceram. Soc. 67, 203–210 (2008)CrossRefGoogle Scholar
  3. 3.
    Hubble D. H., Russell R. O., Vernon H. L., Marr R. J.: The Making, Shaping and Treating of Steel. Vol.1: Steelmaking and Refining Volume. 11th ed., 227–290. AISE Steel Foundation, Pittsburgh (1998)Google Scholar
  4. 4.
    Zhang, S., Lee, W.E.: Influence of additives on corrosion resistance and corroded microstructures of MgO-C refractories. J. Eur. Ceram. Soc. 21, 2393–2405 (2001)CrossRefGoogle Scholar
  5. 5.
    Zhang, S., Marriott, N.J., Lee, W.E.: Thermochemistry and microstructures of MgO–C refractories containing various antioxidants. J. Eur. Ceram. Soc. 21, 1037–1047 (2001)CrossRefGoogle Scholar
  6. 6.
    Li, X., Rigaud, M., Palco, S.: Oxidation kinetics of graphite phase in magnesia-carbon refractories. J. Am. Ceram. Soc. 78, 965–971 (1995)CrossRefGoogle Scholar
  7. 7.
    Gokce, S., Gurcan, C., Ozgen, S., Aydin, S.: The effect of antioxidants on the oxidation behavior of magnesia–carbon refractory bricks. Ceram. Int. 34, 323–330 (2008)CrossRefGoogle Scholar
  8. 8.
    Ghosh, N.K., Jagannathan, K.P., Ghosh, D.N.: Oxidation of magnesia-carbon refractories with addition of aluminum and silicon in air. InterCeram. 50, 196–202 (2001)Google Scholar
  9. 9.
    Ghosh, N.K., Ghosh, D.N., Jagannathan, K.P.: Oxidation mechanism of MgO–C in air at various temperatures. Br. Ceram. Trans. 99, 124–128 (2000)CrossRefGoogle Scholar
  10. 10.
    Sadrnezhaad, S.K., Nemati, Z.A., Mahshid, S., Hosseini, S., Hashemi, B.: Effect of Al antioxidant on the rate of oxidation of carbon in MgO–C refractory. J. Am. Ceram. Soc. 90, 509–515 (2007)CrossRefGoogle Scholar
  11. 11.
    Aneziris, C.G., Hubalkova, J., Barabás, R.: Microstructure evaluation of MgO–C refractories with TiO2 and Al-additions. J. Eur. Ceram. Soc. 27, 73–78 (2007)CrossRefGoogle Scholar
  12. 12.
    Zhang, S., Yamaguchi, A.: Effects of B4C on the crystallization and oxidation resistance of carbon from resin. J. Ceram. Soc. Jpn. 102, 830–834 (1994)CrossRefGoogle Scholar
  13. 13.
    Campos, K.S., e Silva, G.F.B.L., Nunes, E.H.M., Vasconcelos, W.L.: The influence of B4C and MgB2 additions on the behavior of MgO–C bricks. Ceram. Int. 38, 5661–5667 (2012)CrossRefGoogle Scholar
  14. 14.
    Hayashi, S., Takanaga, S., Takahashi, H., Watanabe, A.: Behavior of boric compounds added in MgO-C bricks. Taikabutsu Overseas. 11, 12–19 (1991)Google Scholar
  15. 15.
    Heidari, B.M., Naghizadeh, R., Rezaie, H.R., Fallah, V.M.: Synthesis of dehydrated magnesium borate powders and the effect on the properties of MgO-C refractories. J. Ceram. Process. Res. 19, 1–6 (2018)Google Scholar
  16. 16.
    Yamaguchi, A., Tanaka, H.: Behavior and effects of ZrB2 added to carbon-containing refractories. Taikabutsu Overseas. 15, 3–9 (1995)Google Scholar
  17. 17.
    Lin, L.I., Hong, Y.R., Sun, J.L., He, Z.Y., Peng, X.Y.: Formation of ZrB2 in MgO-C composite materials using in-situ synthesis method. J. Iron Steel Res. Int. 13, 70–74 (2006)CrossRefGoogle Scholar
  18. 18.
    Rahaman M. N.: Ceramic processing and sintering, 2nd edition, Marcel Dekker, 341–343, Taylor & Francis e-Library, New York (2003)Google Scholar
  19. 19.
    Sadrnezhaad, S.K., Mahshid, S., Hashemi, B., Nemati, Z.A.: Oxidation mechanism of C in MgO–C refractory bricks. J. Am. Ceram. Soc. 89, 1308–1316 (2006)CrossRefGoogle Scholar
  20. 20.
    Behera, S., Sarkar, R.: Low-carbon magnesia-carbon refractory: use of N220 nanocarbon black. Int. J. Appl. Ceram. Technol. 11, 968–976 (2014)CrossRefGoogle Scholar
  21. 21.
    Hashemi, B., Faghihi-Sani, M.A., Nemati, Z.A.: Effects of graphite content on the oxidation resistance of MgO-C refractory bricks. Sci. Iran. 12, 274–279 (2005)Google Scholar
  22. 22.
    Irie, S., Rappolt, J.: Phenolic resin for refractories. In: Pilato, L. (ed.) Phenolic resins: a century of progress, pp. 503–515. Springer Berlin Heidelberg, Berlin (2010)CrossRefGoogle Scholar
  23. 23.
    Hashemi, B., Nemati, Z.A., Faghihi-Sani, M.A.: Effects of resin and graphite content on density and oxidation behavior of MgO-C refractory bricks. Ceram. Int. 32, 313–319 (2006)CrossRefGoogle Scholar
  24. 24.
    Zhu, B., Zhu, Y., Li, X., Zhao, F.: Effect of ceramic bonding phases on the thermo-mechanical properties of Al2O3–C refractories. Ceram. Int. 39(6), 6069–6076 (2013)CrossRefGoogle Scholar
  25. 25.
    Peng, L.M., Li, X.K., Li, H., Wang, J.H., Gong, M.: Synthesis and microstructural characterization of aluminum borate whiskers. Ceram. Int. 32, 365–368 (2006)CrossRefGoogle Scholar
  26. 26.
    Luz, A.P., Pandolfelli, V.C.: Review article: performance of the antioxidants in carbon containing refractories. Cerâmica. 53, 334–344 (2007)CrossRefGoogle Scholar
  27. 27.
    da Silveira, W., Falk, G.: Production of MgO-X refractory material with cellular matrix by colloidal processing. Low Carbon Econ. 3, 83–91 (2012)CrossRefGoogle Scholar
  28. 28.
    Arianpour, A.Ç., Turan, S.: Effect of calcination on the production of sintered MgAl2O4 by using different local waste Al2O3 powders. J. Aust. Ceram. Soc. 53, 975–983 (2017)CrossRefGoogle Scholar
  29. 29.
    Roinne A., Mansikka J., and Bjorklund P. HSC Chemistry, Thermodynamic software, 1974–2006.Google Scholar
  30. 30.
    Wang, T., Yamaguchi, A.: Oxidation protection of MgO–C refractories by means of Al8B4C7. J. Amer. Ceram. Soc. 84, 577–582 (2004)CrossRefGoogle Scholar
  31. 31.
    Rymon-Lipinski, T., Fichtner, R., Benecke, T.: Study of the oxidation of MgO-C refractories by means of boron carbide. Steel Res. 63, 493–495 (1992)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • M. Heidari Bagherabadi
    • 1
  • R. Naghizadeh
    • 1
    Email author
  • H. R. Rezaie
    • 1
  • M. Fallah Vostakola
    • 1
  1. 1.School of Metallurgy and Materials EngineeringIran University of Science & Technology (IUST)TehranIran

Personalised recommendations