Advertisement

Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 265–268 | Cite as

Concentration dependence of the Cr3+ ESR linewidth in barium titanate

  • R. S. de BiasiEmail author
  • M. L. N. Grillo
Research
  • 14 Downloads

Abstract

The concentration dependence of the electron spin resonance (ESR) linewidth of Cr3+ ions in chromium-doped barium titanate (BaTiO3) was investigated at room temperature for chromium concentrations between 0.10 and 2.00 mol%. According to previous studies, chromium substitutes Ti4+ sites in the lattice and its preferred valence state is Cr4+, which is ESR silent in the X-band. In the present work, the Cr3+ state was enhanced by codoping with Nb, as it has been done previously in a similar compound, SrTiO3. The results show that the concentration dependence of the ESR peak-to-peak linewidth and the relative intensity of the Cr3+ spectrum can be approximated by the theoretical equations ΔHpp = 3.30 + C1(1 − f)80 mT and I = C2f(1 − f)80, where f is the chromium concentration and C1 and C2 are constants. This suggests that the range of the exchange interaction between Cr3+ ions in barium titanate is about 0.96 nm.

Keywords

Ceramics Electron spin resonance Barium titanate Chromium Niobium 

References

  1. 1.
    de Biasi, R.S., Grillo, M.L.N.: Electron magnetic resonance of diluted solid solutions of Gd3+ in BaTiO3. Mater. Res. 18, 288–291 (2015)CrossRefGoogle Scholar
  2. 2.
    Dang, N.V., Dung, N.T., Phong, P.T., Lee, I.-J.: Effect of Fe3+ substitution on structural, optical and magnetic properties of barium titanate ceramics. Physica B. 457, 103–107 (2015)CrossRefGoogle Scholar
  3. 3.
    Kweim, G.H., Lawson, A.C., Billings, S.J.L.: Structures of the ferroelectric phases of barium titanate. J. Phys. Chem. 97, 2368–2377 (1993)CrossRefGoogle Scholar
  4. 4.
    Böttcher, R., Erdem, E., Langhammer, H.T., Abicht, H.-P.: Incorporation of chromium into hexagonal barium titanate: an electron paramagnetic resonance study. J. Phys. Condens. Matter. 17, 2763–2774 (2005)CrossRefGoogle Scholar
  5. 5.
    La Mattina, F., Bednorz, J.G., Alvarado, S.F., Shengelaya, A., Muller, K.A., Keller, H.: Controlled oxygen vacancies and space correlation with Cr3+ in SrTiO3. Phys. Rev. B Condens. Matter. 80, 075122 (2009)CrossRefGoogle Scholar
  6. 6.
    de Biasi, R.S., Grillo, M.L.N.: Influence of chromium concentration on the electron magnetic resonance linewidth of Cr3+ in SrTiO3. Mater. Res. 15, 472–476 (2012)CrossRefGoogle Scholar
  7. 7.
    Kittel, C., Abrahams, E.: Dipolar broadening of magnetic resonance lines in magnetically diluted crystals. Phys. Rev. 90, 238–239 (1953)CrossRefGoogle Scholar
  8. 8.
    de Biasi, R.S., Fernandes, A.A.R.: The ESR linewidth of dilute solid solutions. J. Phys. C Solid State Phys. 16, 5481–5489 (1983)CrossRefGoogle Scholar
  9. 9.
    Kweu, G.H., Lawson, A.C., Billinge, S.J.L.: Structures of the ferroelectric phases of barium titanate. J. Phys. Chem. 97, 2368–2377 (1993)CrossRefGoogle Scholar
  10. 10.
    de Biasi, R.S., Grillo, M.L.N.: Electron spin resonance of chromia-yttria solid solutions. J. Phys. Chem. Solids. 66, 1806–1809 (2005)CrossRefGoogle Scholar
  11. 11.
    Anderson, P.W.: New approach to the theory of superexchange interactions. Phys. Rev. 115, 2–13 (1959)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  1. 1.Seção de Engenharia de MateriaisInstituto Militar de EngenhariaRio de JaneiroBrazil
  2. 2.Instituto de FísicaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations