Advertisement

Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 257–263 | Cite as

Effect of alkaline earth dopant on density, mechanical, and electrical properties of Cu0.97AE0.03CrO2 (AE = Mg, Ca, Sr, and Ba) delafossite oxide

  • M. A. MadreEmail author
  • M. A. Torres
  • J. A. Gomez
  • J. C. Diez
  • A. Sotelo
Research
  • 139 Downloads

Abstract

CuCrO2 and Cu0.97AE0.03CrO2 (AE = Mg, Ca, Sr, and Ba) polycrystalline materials have been prepared through the classical solid state route. CuCrO2 is the major phase in all cases, with larger grain sizes when the alkaline earth dopant is larger. Doping also promotes the formation of secondary phases, which appear in the grain boundaries in the Ca, Sr, and Ba doped samples. Density has been drastically improved through doping, reflected in lower electrical resistivities and higher mechanical properties than the measured in undoped samples. In spite of a relatively high decrease of Seebeck coefficient, all doped samples reached higher power factor values than the undoped ones in the whole measured temperature range. The highest power factor has been reached in Mg doped samples, 0.32 mW/K2 m at 800 °C, which is among the highest obtained so far in randomly oriented polycrystalline CuCrO2 materials.

Keywords

Ceramics Delafossites Doping Hardness Electrical properties 

Notes

Acknowledgements

The authors wish to thank the Gobierno de Aragón-FEDER (Grupos de Investigacion Consolidados T12 and T87), MINECO-FEDER (MAT2017-82183-C3-1-R), and Universidad de Zaragoza (UZ2017-TEC-03) for financial support. Authors would like to acknowledge the use of Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza.

References

  1. 1.
    Elsheikh, M.H., Shnawah, D.A., Sabri, M.F.M., Said, S.B.M., Hassan, M.H., Bashir, M.B.A., Mohamad, M.: A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew Sust Energ Rev. 30, 337–355 (2014)CrossRefGoogle Scholar
  2. 2.
    Rowe, D.M.: Thermoelectrics Handbook: Macro to Nano. CRC Press, Boca Raton (2006)Google Scholar
  3. 3.
    Wang, H.C., Hwang, J., Snedaker, M.L., Kim, I.-H., Kang, C., Kim, J., Stucky, G.D., Bowers, J., Kim, W.: High thermoelectric performance of a heterogeneous PbTe nanocomposite. Chem Mater. 27, 944–999 (2015)CrossRefGoogle Scholar
  4. 4.
    Terasaki, I., Sasago, Y., Uchinokura, K.: Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B. 56, 12685–12687 (1997)CrossRefGoogle Scholar
  5. 5.
    Delorme, F., Diaz-Chao, P., Guilmeau, E., Giovannelli, F.: Thermoelectric properties of Ca3Co4O9-Co3O4 composites. Ceram Int. 41, 10038–10043 (2015)CrossRefGoogle Scholar
  6. 6.
    Masset, A.C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., Raveau, B., Hejtmanek, J.: Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys Rev B. 62, 166–175 (2000)CrossRefGoogle Scholar
  7. 7.
    Zhai, J.Z., Wang, H.C., Su, W.B., Liu, J., Zhou, Y.C., Wang, T., Li, Y., Zhang, Y.C., Wang, C.L.: The phase structure and electrical performance of the limited solid solution CuFeO2-CuAlO2 thermoelectric ceramics. J Mater Sci Mater Electron. 28, 5053–5057 (2017)CrossRefGoogle Scholar
  8. 8.
    Meng, Q.G., Lu, S.F., Lu, S.H., Xiang, Y.: Preparation of p-type CuCr1-xMgxO2 bulk with improved thermoelectric properties by sol–gel method. J Sol-Gel Sci Technol. 63, 1–7 (2012)CrossRefGoogle Scholar
  9. 9.
    Chikoidze, E., Boshta, M., Gomaa, M., Tchelidze, T., Daraselia, D., Japaridze, D., Shengelaya, A., Dumont, Y., Neumann-Spallart, M.: Control of p-type conduction in Mg doped monophase CuCrO2 thin layers. J Phys D Appl Phys. 49, 205107 (2016)CrossRefGoogle Scholar
  10. 10.
    Marquardt, M.A., Ashmore, N.A., Cann, D.P.: Crystal chemistry and electrical properties of the delafossite structure. Thin Solid Films. 496, 146–156 (2006)CrossRefGoogle Scholar
  11. 11.
    Zhu, Y.H., Su, W.B., Liu, J., Zhou, Y.C., Li, J.C., Zhang, X.H., Du, Y.L., Wang, C.L.: Effects of Dy and Yb co-doping on thermoelectric properties of CaMnO3 ceramics. Ceram Int. 41, 1535–1539 (2015)CrossRefGoogle Scholar
  12. 12.
    Sotelo, A., Madre, M., Torres, M., Diez, J.: Effect of synthesis process on the densification, microstructure, and electrical properties of Ca0.9Yb0.1MnO3 ceramics. Int J Appl Ceram Technol. 14, 1190–1196 (2017)CrossRefGoogle Scholar
  13. 13.
    Wang, H., Wang, C.L.: Thermoelectric properties of Yb-doped La0.1Sr0.9TiO3 ceramics at high temperature. Ceram Int. 39, 941–946 (2013)CrossRefGoogle Scholar
  14. 14.
    Li, L.L., Liu, Y.F., Qin, X.Y., Li, D., Zhang, J., Song, C.J., Wang, L.: Enhanced thermoelectric performance of highly dense and fine-grained (Sr1-xGdx)TiO3-δ ceramics synthesized by sol–gel process and spark plasma sintering. J Alloys Compd. 588, 562–567 (2014)CrossRefGoogle Scholar
  15. 15.
    Delorme, F., Chen, C., Pignon, B., Schoenstein, F., Perriere, L., Giovannelli, F.: Promising high temperature thermoelectric properties of dense Ba2Co9O14 ceramics. J Eur Ceram Soc. 37, 2615–2620 (2017)CrossRefGoogle Scholar
  16. 16.
    Zhou, Y.C., Wang, C.L., Su, W.B., Liu, J., Wang, H.C., Li, J.C., Li, Y., Zhai, J.Z., Zhang, Y.C., Mei, L.M.: Electrical properties of Dy3+/Na+ co-doped oxide thermoelectric [Ca1-x(Na1/2Dy1/2)x]MnO3 ceramics. J Alloys Compd. 680, 129–132 (2016)CrossRefGoogle Scholar
  17. 17.
    Abdellahi, M., Bahmanpour, M., Bahmanpour, M.: Modeling Seebeck coefficient of Ca3-xMxCo4O9 (M=Sr, Pr, Ga, Ca, Ba, La, Ag) thermoelectric ceramics. Ceram Int. 41, 345–352 (2015)CrossRefGoogle Scholar
  18. 18.
    Aguilar, C.G., Moreno, C.E., Castillo, M.P., Caballero-Briones, F.: Effect of calcination temperature on structure and thermoelectric properties of CuAlO2 powders. J Mater Sci. 53, 1646–1657 (2018)CrossRefGoogle Scholar
  19. 19.
    Rudradawong, C., Ruttanapun, C.: Effect of excess oxygen for CuFeO2.06 delafossite on thermoelectric and optical properties. Phys B Condens Matter. 526, 21–27 (2017)CrossRefGoogle Scholar
  20. 20.
    Schiavo, E., Latouche, C., Barone, V., Crescenzi, O., Munoz-Garcia, A.B., Pavone, M.: An ab initio study of Cu-based delafossites as an alternative to nickel oxide in photocathodes: effects of Mg-doping and surface electronic features. Phys Chem Chem Phys. 20, 14082–14089 (2018)CrossRefGoogle Scholar
  21. 21.
    Varga, A., Samu, G.F., Janaky, C.: Rapid synthesis of interconnected CuCrO2 nanostructures: a promising electrode material for photoelectrochemical fuel generation. Electrochim Acta. 272, 22–32 (2018)CrossRefGoogle Scholar
  22. 22.
    Lunca-Popa, P., Afonso, J., Grysan, P., Crepelliere, J., Leturcq, R., Lenoble, D.: Tuning the electrical properties of the p-type transparent conducting oxide Cu1-xCr1+xO2 by controlled annealing. Sci Rep. 8(7216), (2018)Google Scholar
  23. 23.
    Nie, S.B., Liu, A., Meng, Y., Shin, B., Liu, G.X., Shan, F.K.: Solution-processed ternary p-type CuCrO2 semiconductor thin films and their application in transistors. J Mater Chem C. 6, 1393–1398 (2018)CrossRefGoogle Scholar
  24. 24.
    Albaalbaky, A., Kvashnin, Y., Ledue, D., Patte, R., Fresard, R.: Magnetoelectric properties of multiferroic CuCrO2 studied by means of ab initio calculations and Monte Carlo simulations. Phys Rev B. 96(064431), (2017)Google Scholar
  25. 25.
    Apostolov, A.T., Apostolova, I.N., Trimper, S., Wesselinowa, J.M.: Dielectric properties of multiferroic CuCrO2. Eur Phys J B. 90(236), (2017)Google Scholar
  26. 26.
    Hayashi, K., Sato, K., Nozaki, T., Kajitani, T.: Effect of doping on thermoelectric properties of Delafossite-type oxide CuCrO2. Jpn J Appl Phys. 47, 59–63 (2008)CrossRefGoogle Scholar
  27. 27.
    Maignan, A., Martin, C., Fresard, R., Eyert, V., Guilmeau, E., Hebert, S., Poienar, M., Pelloquin, D.: On the strong impact of doping in the triangular antiferromagnet CuCrO2. Solid State Commun. 149, 962–967 (2009)CrossRefGoogle Scholar
  28. 28.
    Tripathi, T.S., Karppinen, M.: Enhanced p-type transparent semiconducting characteristics for ALD-grown Mg-substituted CuCrO2 thin films. Adv Electron Mater. 3, 1600341 (2017)CrossRefGoogle Scholar
  29. 29.
    Tawat, S., Titipun, T., Somchai, T.: Thermoelectric and optical properties of CuAlO2 synthesized by direct microwave heating. Curr Appl Phys. 14, 1257–1262 (2014)CrossRefGoogle Scholar
  30. 30.
    Chuai, Y.H., Wang, X., Shen, H.Z., Li, Y.D., Zheng, C.T., Wang, Y.D.: Effects of Zn-doping on structure and electrical properties of p-type conductive CuCr1-xZnxO2 delafossite oxide. J Mater Sci. 51, 3592–3599 (2016)CrossRefGoogle Scholar
  31. 31.
    Benreguia, N., Abdi, A., Mahroua, O., Trari, M.: Semiconducting and photoelectrochemical characterizations of CuCrO2 powder synthesized by sol-gel method. J Solid State Electrochem. (2018)  https://doi.org/10.1007/s10008-018-3967-2
  32. 32.
    Rasekh, S., Constantinescu, G., Bosque, P., Madre, M.A., Torres, M.A., Diez, J.C., Sotelo, A.: Doping effect in Ca3Co4-xZnxOy ceramics. J Mater Sci Mater Electron. 25, 4033–4038 (2014)CrossRefGoogle Scholar
  33. 33.
    Gao, C., Lin, F., Zhou, X., Shi, W., Liu, A.: Fe concentration dependences of microstructure and magnetic properties for Cu(Cr1-xFex)O2 ceramics. J Alloys Compd. 565, 154–158 (2013)CrossRefGoogle Scholar
  34. 34.
    Kahraman, F.: Evaluation of the Vickers microhardness and fracture toughness on hot pressed Bi-2212/Ag ceramic composites. J Mater Sci Mater Electron. 27, 8006–8012 (2016)CrossRefGoogle Scholar
  35. 35.
    Madre, M.A., Torres, M.A., Sotelo, A.: High mechanical and thermoelectric performances in hot-pressed CdO. J Mater Sci Mater Electron. 28, 5518–5522 (2017)CrossRefGoogle Scholar
  36. 36.
    Ozkurt, B.: The influence of Na addition on the mechanical properties of Bi-2212 superconductors. J Supercond Nov Magn. 27, 2407–2414 (2014)CrossRefGoogle Scholar
  37. 37.
    Kaya, I.C., Sevindik, M.A., Akyildiz, H.: Characteristics of Fe- and Mg-doped CuCrO2 nanocrystals prepared by hydrothermal synthesis. J Mater Sci Mater Electron. 27, 2404–2411 (2016)CrossRefGoogle Scholar
  38. 38.
    Okuda, T., Jufuku, N., Hidaka, S., Terada, N.: Magnetic, transport, and thermoelectric properties of the delafossite oxides CuCr1−xMgxO2 (0 ≤ x ≤ 0.04). Phys Rev B. 72(144403), (2005)Google Scholar
  39. 39.
    Gotzendorfer, S., Bywalez, R., Lobmann, P.: Preparation of p-type conducting transparent CuCrO2 and CuAl0.5Cr0.5O2 thin films by sol-gel processing. J Sol-Gel Sci Technol. 52, 113–119 (2009)CrossRefGoogle Scholar
  40. 40.
    Gotzendorfer, S., Polenzky, C., Ulrich, S., Lobmann, P.: Preparation of CuAlO2 and CuCrO2 thin films by sol-gel processing. Thin Solid Films. 518, 1153–1156 (2009)CrossRefGoogle Scholar
  41. 41.
    Banerjee, A.N., Ghosh, C.K., Chattopadhyay, K.K.: Effect of excess oxygen on the electrical properties of transparent p-type conducting CuAlO2+x thin films. Sol Energy Mater Sol Cells. 89, 75–83 (2005)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  1. 1.Instituto de Ciencia de Materiales de Aragón (CSIC-Universidad de Zaragoza)ZaragozaSpain

Personalised recommendations