Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 219–227 | Cite as

Microwave-assisted processing of cobalt aluminate blue nano-ceramic pigment using sol–gel method

  • Masoud RajabiEmail author
  • Pegah Kharaziyan
  • Mehdi Montazeri-Pour


In the present research, CoAl2O4 nano-pigment powder was synthesized by a combination of citrate–gel processing and microwave-assisted heating route. Blue CoAl2O4 ceramic nano-pigment was rapidly obtained after calcination in microwave oven. Thermal decomposition behavior of the as-synthesized precursor was monitored by DTA/TGA (differential thermal analysis/thermo-gravimetric analysis). The effects of various microwave exposure times (8–15 min) on the phase composition and difference in color were evaluated through X-ray diffraction (XRD) and CIE Lab color space system, respectively. The mean crystallite size of blue nano-pigment powders was determined by the X-ray line broadening technique. The optimum time of pigment processing by utilizing microwave oven was obtained at 15 min to get a sufficiently intense blue color. Scanning electron microscopy (SEM) and field emission SEM (FE-SEM) characterizations were employed to observe the size and morphology of optimum powder particles. Particles size analysis by SEM indicated that the majority of quasi-spherical particles have a small size in the range of nano which was in agreement with XRD results, while FE-SEM studies confirmed flower-like morphology of as-prepared powder.


Cobalt aluminate Nano-pigments Microwave processing Sol–gel method 



The authors would like to thank Iran National Science Foundation (INSF) for financially supporting this research work under contract number of 94/sad/42699 on 9/11/2015.


  1. 1.
    Eastaugh, N., Walsh, V., Chaplin, T., Siddall, R.: The pigment compendium: a dictionary of historical pigments. Elsevier Butterworth-Heinemann, Amsterdam (2004)Google Scholar
  2. 2.
    Gettens, R.J., Stout, G.L.: Painting materials: a short encyclopedia. Dover Publications, New York (2011)Google Scholar
  3. 3.
    Tilley, R.J.D.: Colour and the optical properties of materials, 2nd edn. John Wiley & Sons, United Kingdom (2011)Google Scholar
  4. 4.
    Salavati-Niasari, M., Farhadi-Khouzani, M., Davar, F.: Bright blue pigment CoAl2O4 nanocrystals prepared by modified sol–gel method. J. Sol-Gel Sci. Technol. 52, 321–327 (2009)CrossRefGoogle Scholar
  5. 5.
    Li, W., Li, J., Guo, J.: Synthesis and characterization of nanocrystalline CoAl2O4 spinel powder by low temperature combustion. J. Eur. Ceram. Soc. 23, 2289–2295 (2003)CrossRefGoogle Scholar
  6. 6.
    Salem, S.: Effect of calcination temperature on colorant behavior of cobalt-aluminate nano-particles synthesized by combustion technique. J. Ind. Eng. Chem. 20, 818–823 (2014)CrossRefGoogle Scholar
  7. 7.
    Bernardi, M.I.B., Cava, S., Paiva-Santos, C.O., Leite, E.R., Paskocimas, C.A., Longo, E.: Comparison of blue pigments prepared by two different methods. J. Eur. Ceram. Soc. 22, 2911–2919 (2002)CrossRefGoogle Scholar
  8. 8.
    Marques, C.H., Mesquita, A., Araújo, V.D., Bernardi, M.I.B.: Influence of the pH on Al2O3:CuO pigments prepared by a polymeric precursor method. Mater. Res. 16, 100–104 (2013)CrossRefGoogle Scholar
  9. 9.
    Zayat, M., Levy, D.: Blue CoAl2O4 particles prepared by the sol−gel and citrate−gel methods. Chem. Mater. 12, 2763–2769 (2000)CrossRefGoogle Scholar
  10. 10.
    Duan, X., Pan, M., Yu, F., Yuan, D.: Synthesis, structure and optical properties of CoAl2O4 spinel nanocrystals. J. Alloys Compd. 509, 1079–1083 (2011)CrossRefGoogle Scholar
  11. 11.
    Gama, L., Ribeiro, M.A., Barros, B.S., Kiminami, R.H.A., Weber, I.T., Costa, A.C.F.M.: Synthesis and characterization of the NiAl2O4, CoAl2O4 and ZnAl2O4 spinels by the polymeric precursors method. J. Alloys Compd. 483, 453–455 (2009)CrossRefGoogle Scholar
  12. 12.
    Chen, Z., Shi, E., Li, W., Zheng, Y., Wu, N., Zhong, W.: Particle size comparison of hydrothermally synthesized cobalt and zinc aluminate spinels. J. Am. Ceram. Soc. 85, 2949–2955 (2002)CrossRefGoogle Scholar
  13. 13.
    Yu, F., Yang, J., Ma, J., Du, J., Zhou, Y.: Preparation of nanosized CoAl2O4 powders by sol–gel and sol–gel-hydrothermal methods. J. Alloys Compd. 468, 443–446 (2009)CrossRefGoogle Scholar
  14. 14.
    Lv, W., Qiu, Q., Wang, F., Wei, S., Liu, B., Luo, Z.: Sonochemical synthesis of cobalt aluminate nanoparticles under various preparation parameters. Ultrason. Sonochem. 17, 793–801 (2010)CrossRefGoogle Scholar
  15. 15.
    Busca, G., Lorenzelli, V., Bolis, V.: Preparation, bulk characterization and surface chemistry of high-surface-area cobalt aluminate. Mater. Chem. Phys. 31, 221–228 (1992)CrossRefGoogle Scholar
  16. 16.
    Ahmed, I.S., Shama, S.A., Moustafa, M.M., Dessouki, H.A., Ali, A.A.: Synthesis and spectral characterization of CoxMg1−xAl2O4 as new nano-coloring agent of ceramic pigment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 74, 665–672 (2009)CrossRefGoogle Scholar
  17. 17.
    Ahmed, I.S.: A simple route to synthesis and characterization of CoAl2O4 nanocrystalline via combustion method using egg white (ovalbumine) as a new fuel. Mater. Res. Bull. 46, 2548–2553 (2011)CrossRefGoogle Scholar
  18. 18.
    Salem, S., Jazayeri, S.H., Bondioli, F., Allahverdi, A., Shirvani, M., Ferrari, A.M.: CoAl2O4 nano pigment obtained by combustion synthesis. Int. J. Appl. Ceram. Technol. 9, 968–978 (2012)CrossRefGoogle Scholar
  19. 19.
    Blanco, O., Lázaro, J.P.M., Rodríguez-Betancourtt, V.M., Gómez, J.R., Barrera, A.: Colloidal synthesis of CoAl2O4 nanoparticles using dodecylamine and their structural characterization. Superficies y Vacío. 29, 78–82 (2016)Google Scholar
  20. 20.
    Rajabi, M., Sale, F.R.: Synthesis and characterization of 2212 BSCCO superconducting materials via the gel processing route. Proceedings of the First European Ceramic Society Conference (ECers 89), pp. 2426–2430. Elsevier, Maastricht (1989)Google Scholar
  21. 21.
    Tizjang, V., Montazeri-Pour, M., Rajabi, M., Kari, M., Moghadas, S.: Surface modification of sol–gel synthesized TiO2 photo-catalysts for the production of core/shell structured TiO2–SiO2 nano-composites with reduced photo-catalytic activity. J. Mater. Sci. Mater. Electron. 26, 3008–3019 (2015)CrossRefGoogle Scholar
  22. 22.
    Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Appl. Stoch. Model Bus. Ind. 33, 314–321 (2017)CrossRefGoogle Scholar
  23. 23.
    Elsagh, M., Rajabi, M., Amini, E.: Characterization of SrAl2O4:Eu2+, Dy3+ phosphor nano-powders produced by microwave synthesis route. J. Mater. Sci. Mater. Electron. 25, 1612–1619 (2014)CrossRefGoogle Scholar
  24. 24.
    Wang, X.-j., Yang, W.-y., Li, F.-t., Xue, Y.-b., Liu, R.-h., Hao, Y.-j.: In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties. Ind. Eng. Chem. Res. 52, 17140–17150 (2013)CrossRefGoogle Scholar
  25. 25.
    Baghbanzadeh, M., Carbone, L., Cozzoli, P.D., Kappe, C.O.: Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem. Int. Ed. 50, 11312–11359 (2011)CrossRefGoogle Scholar
  26. 26.
    Johari, M., Rajabi, M., Mohammadi, V.: Production of SrAl2O4:Eu2+, Dy3+ green-emitting phosphor nano-pigment powders via microwave processing route. Pigm. Resin. Technol. 46, 85–91 (2017)CrossRefGoogle Scholar
  27. 27.
    Cullity, B.D.: Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Massachusetts (1978)Google Scholar
  28. 28.
    Melgosa, M., Tremeau, A., Cui, G.: Colour difference evaluation. In: Fernandez-Maloigne, C. (ed.) Advanced color image processing and analysis, pp. 59–79. Springer, New York (2013)CrossRefGoogle Scholar
  29. 29.
    Granato, D., Masson, M.L.: Instrumental color and sensory acceptance of soy-based emulsions: a response surface approach. Cienc. Tecnol. Aliment. 30, 1090–1096 (2010)CrossRefGoogle Scholar
  30. 30.
    Kajinebaf, V.T., Rezaeian, F., Rajabi, M., Baghshahi, S., Siahpoush, S.M.: Effect of using nano-kaolin on synthesis time of ultramarine pigment. J. Basic Appl. Sci. Res. 3(1s), 293–298 (2013)Google Scholar
  31. 31.
    Grazenaite, E., Pinkas, J., Beganskiene, A., Kareiva, A.: Sol–gel and sonochemically derived transition metal (Co, Ni, Cu, and Zn) chromites as pigments: a comparative study. Ceram. Int. 42, 9402–9412 (2016)CrossRefGoogle Scholar
  32. 32.
    Obata, S., Kato, M., Yokoyama, H., Iwata, Y., Kikumoto, M., Sakurada, O.: Synthesis of nano CoAl2O4 pigment for ink-jet printing to decorate porcelain. J. Ceram. Soc. Jpn. 119, 208–213 (2011)CrossRefGoogle Scholar
  33. 33.
    Tielens, F., Calatayud, M., Franco, R., Recio, J.M., Pérez-Ramírez, J., Minot, C.: Theoretical investigation of the inversion parameter in Co3−sAlsO4 (s=0–3) spinel structures. Solid State Ion. 180, 1011–1016 (2009)CrossRefGoogle Scholar
  34. 34.
    Kurajica, S., Tkalčec, E., Gržeta, B., Iveković, D., Mandić, V., Popović, J., et al.: Evolution of structural and optical properties in the course of thermal evolution of sol–gel derived cobalt-doped gahnite. J. Alloys Compd. 509, 3223–3228 (2011)CrossRefGoogle Scholar
  35. 35.
    Wahba, A.M., Imam, N.G., Mohamed, M.B.: Flower-like morphology of blue and greenish-gray ZnCoxAl2-xO4 nanopigments. J. Mol. Struct. 1105, 61–69 (2016)CrossRefGoogle Scholar
  36. 36.
    Stangar, U.L., Orel, B., Krajnc, M.: Preparation and spectroscopic characterization of blue CoAl2O4 coatings. J. Sol-Gel Sci. Technol. 26, 771–775 (2003)CrossRefGoogle Scholar
  37. 37.
    Mindru, I., Marinescu, G., Gingasu, D., Patron, L., Ghica, C., Giurginca, M.: Blue CoAl2O4 spinel via complexation method. Mater. Chem. Phys. 122, 491–497 (2010)CrossRefGoogle Scholar
  38. 38.
    Abaide, E.R., Anchieta, C.G., Foletto, V.S., Reinehr, B., Nunes, L.F., Kuhn, R.C., et al.: Production of copper and cobalt aluminate spinels and their application as supports for inulinase immobilization. Mater. Res. 18, 1062–1069 (2015)CrossRefGoogle Scholar
  39. 39.
    Chadorbafzadeh, M., Baghshahi, S., Mohebi, M.M.: Synthesis and spectra characterization of CoxZn1-xAl2O4 nanosized pigments by gel combustion method. Ceram. – Silikáty. 56, 301–305 (2012)Google Scholar
  40. 40.
    Jafari, M., Hassanzadeh-Tabrizi, S.A.: Preparation of CoAl2O4 nanoblue pigment via polyacrylamide gel method. Powder Technol. 266, 236–239 (2014)CrossRefGoogle Scholar
  41. 41.
    Buxbaum, G., Pfaff, G.: Industrial inorganic pigments. WILEY-VCH Verlag GmbH, Weinheim (2005)CrossRefGoogle Scholar
  42. 42.
    Kari, M., Montazeri-Pour, M., Rajabi, M., Tizjang, V., Moghadas, S.: Maximum SiO2 layer thickness by utilizing polyethylene glycol as the surfactant in synthesis of core/shell structured TiO2–SiO2 nano-composites. J. Mater. Sci. Mater. Electron. 25, 5560–5569 (2014)CrossRefGoogle Scholar
  43. 43.
    Montazeri-Pour, M., Ataie, A.: Synthesis of nanocrystalline barium ferrite in ethanol/water media. J. Mater. Sci. Technol. 25, 465–469 (2009)Google Scholar
  44. 44.
    Montazeri-Pour, M., Ataie, A., Nikkhah-Moshaie, R.: Synthesis of nano-crystalline barium hexaferrite using a reactive co-precipitated precursor. IEEE Trans. Magn. 44, 4239–4242 (2008)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • Masoud Rajabi
    • 1
    Email author
  • Pegah Kharaziyan
    • 1
  • Mehdi Montazeri-Pour
    • 2
  1. 1.Department of Materials Science and Engineering, Faculty of Technology and EngineeringImam Khomeini International University (IKIU)QazvinIran
  2. 2.Department of Chemical and Materials EngineeringBuein Zahra Technical UniversityQazvinIran

Personalised recommendations