Advertisement

Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 201–218 | Cite as

Structural, morphological, electrical, impedance and ferroelectric properties of BaO-ZnO-TiO2 ternary system

  • K. Chandra Babu NaiduEmail author
  • V. Narasimha Reddy
  • T. Sofi Sarmash
  • D. Kothandan
  • T. Subbarao
  • N. Suresh Kumar
Research
  • 24 Downloads

Abstract

A series of (BaO)x-(ZnO)1-x-TiO2 (x = 0.1–0.9) ceramic materials were synthesized via the conventional solid-state reaction method and finally sintered at 1200 °C. The diffraction pattern revealed that the cubic (Zn2Ti3O8 and BaTiO3) and monoclinic (Ba2ZnTi5O13) phases were present in the resultant compositions. The morphology was analysed using scanning electron microscope. The presence of metal oxide (M-O) stretching vibrations was confirmed by Fourier transform infrared spectra. The AC electrical properties such as dielectric constant (εr), loss tangent (tan δ) and AC conductivity (σac) were investigated as a function of temperature (313–673 K) and frequency (100 Hz–5 MHz). The high dielectric constant and loss values were obtained for higher barium contents (beyond x = 0.5) owing to the presence of smaller number of monoclinic Ba2ZnTi5O13 phases. The effect of space-charge polarization was explained from dielectric modulus (M′ and M″) behaviour. The Nyquist plots (Z′ versus Z″) were drawn to justify the electrical conduction mechanism of all compositions. The bulk resistances (Rb) were calculated from Nyquist plots. The room temperature ferroelectric behaviour was illustrated with the help of P-E loop tracer.

Keywords

Ceramics Morphology Dielectric constant Electrical conductivity Impedance analysis Ferroelectric properties 

Notes

Acknowledgements

I acknowledge the Department of Physics, S.K. University, Anantapur, for providing various facilities for sample preparation. Also thankful to Prof. S. Kalainathan, Vellore Institute of Technology (VIT), Tamil Nadu, and IISC-Bangalore for providing P-E loop facility and SEM photos, respectively.

References

  1. 1.
    Chandra Babu Naidu, K., Sofi Sarmash, T., Maddaiah, M., Sreenivasula Reddy, P., Jhansi Rani, D., Subbarao, T.: Synthesis and characterization of MgO-doped SrTiO3 ceramics. J. Aust. Ceram. Soc. 52, 95–101 (2016)Google Scholar
  2. 2.
    Jona, F., Shirane, G.: Ferroelectric crystals. Dover Publications, Inc., New York (1993)Google Scholar
  3. 3.
    Babu Naidu, K.C., Sarmash, T.S., Maddaiah, M., Gurusampath Kumar, A., Jhansi Rani, D., Sharon Samyuktha, V., Obulapathi, L., Subbarao, T.: Structural and electrical properties of PbO-doped SrTiO3 ceramics. J. Ovon. Res. 11, 79–84 (2015)Google Scholar
  4. 4.
    Chandra Babu Naidu, K., Sofi Sarmash, T., Narasimha Reddy, V., Maddaiah, M., Sreenivasula Reddy, P., Subbarao, T.: Structural, dielectric and electrical properties of La2O3 doped SrTiO3 ceramics. J. Aust. Ceram. Soc. 51, 94–102 (2015)Google Scholar
  5. 5.
    Narasimha Reddy, V., Chandra Babu Naidu, K., Subba Rao, T.: Structural, optical and ferroelectric properties of BaTiO3 ceramics. J. Ovonic Res. 12, 185–191 (2016)Google Scholar
  6. 6.
    Fernandez, J.F., Caballero, A.C., Uran, P.D., Moure, C.: Improving sintering behaviour of BaTiO3 by small doping addition. J. Mater. Sci. 31, 975–981 (1996)CrossRefGoogle Scholar
  7. 7.
    Belous, A.G., Ovchar, O.V., Macek-Krzmanc, M., Valant, M.: The homogeneity range and the microwave dielectric properties of the BaZn2Ti4O11 ceramics. J. Eur. Ceram. Soc. 26, 3733–3739 (2006)CrossRefGoogle Scholar
  8. 8.
    Obradovic, N., Filipovic, S., Pavlovic, V., Mitric, M., Markovic, S., Mitic, V., Ðorpevi, N., Ristic, M.M.: Isothermal sintering of barium–zinc–titanate ceramics. Ceram. Int. 37, 21–27 (2011)CrossRefGoogle Scholar
  9. 9.
    Obradović, N., Filipović, S., Pavlović, V.B., Maričić, A., Mitrović, N., Ristić, M.M.: Sintering of mechanically activated magnesium-titanate and barium-zinc-titanate ceramics. Sci. Sinter. 43, 145–151 (2011)CrossRefGoogle Scholar
  10. 10.
    Caballero Jr., A.C., Fern Bndez, F., Moure, C., Duriin, P.: ZnO-doped BaTiO3: microstructure and electrical properties. J. Eur. Ceram. Soc. 17, 513–523 (1997)CrossRefGoogle Scholar
  11. 11.
    Caballero, A.C., Fernández, J.F., Moure, C., Durán, P., Chiang, Y.-M.: Grain growth control and dopant distribution in ZnO-doped BaTiO3. J. Am. Ceram. Soc. 81(1998), 939–944Google Scholar
  12. 12.
    Roth, R.S., Rawn, C.J., Lindsay, C.G., Wong-Ng, W.: Phase equilibria and crystal chemistry of the binary and ternary barium polytitanates and crystallography of the barium zinc polytitantes. J. Solid State Chem. 104, 99–118 (1993)CrossRefGoogle Scholar
  13. 13.
    Chandra Babu Naidu, K., Sofi Sarmash, T., Maddaiah, M., Narasimha Reddy, V., Subbarao, T.: Structural and dielectric properties of CuO-doped SrTiO3 ceramics. AIP Conf. Proc. 1665, 040001 (2015)CrossRefGoogle Scholar
  14. 14.
    Anil Kumar, S., Chandra Babu Naidu, K.: Structural and dielectric properties of Bi2O3 doped SrTiO3 ceramics. Int. J. Chem. Tech. Res. 9, 58–63 (2016)Google Scholar
  15. 15.
    Maddaiah, M., Chandra Babu Naidu, K., Jhansi Rani, D., Subbarao, T.: Synthesis and characterization of CuO-doped SrTiO3 ceramics. J. Ovon. Res. 11, 99–106 (2015)Google Scholar
  16. 16.
    Maddaiah, M., Guru Sampath Kumar, A., Obulapathi, L., Sofi Sarmash, T., Chandra Babu Naidu, K., Jhansi Rani, D., Subba Rao, T.: Synthesis and characterization of strontium doped zinc manganese titanate ceramics. Digest J. Nano Mater. Biostruct. 10, 155–159 (2015)Google Scholar
  17. 17.
    Chintaparty, R., Palagiri, B., Nagireddy, R.R., Immareddy, V.S.R., Madhuri, W.: Effect of pH on structural, optical and dielectric properties of nano-zirconium oxide prepared by hydrothermal method. Mater. Lett. 161, 770–773 (2015)CrossRefGoogle Scholar
  18. 18.
    Reddy, V.N., Sarmash, T.S., Babu Naidu, K.C., Maddaiah, M., Subbarao, T.: Structural and optical properties of BaO-ZnO-TiO2 ternary system. J. Ovon. Res. 12, 261–266 (2016)Google Scholar
  19. 19.
    Chandra Babu Naidu, K., Roopas Kiran, S., Madhuri, W.: Microwave processed NiMgZn ferrites for electromagnetic interference shielding applications. IEEE Trans. Magn. (2016).  https://doi.org/10.1109/TMAG.2016.2625773
  20. 20.
    Jhansi Rani, D., Guru Sampath Kumar, A., Sofi Sarmash, T., Chandra Babu Naidu, K., Maddaiah, M., Subba Rao, T.: Effect of argon/oxygen flow rate on DC magnetron sputtered nano crystalline zirconium titanate thin films. J. Miner. Met. Mater. Soc. 68, 1647–1652 (2016)CrossRefGoogle Scholar
  21. 21.
    Chandra Babu Naidu, K., Madhuri, W.: Effect of nonmagnetic Zn2+ cations on initial permeability of microwave-treated NiMg ferrites. Int. J. Appl. Ceram. Technol., 1–6 (2016),  https://doi.org/10.1111/ijac.12571
  22. 22.
    Chandra Babu Naidu, K., Madhuri, W.: Microwave processed NiMg ferrite: studies on structural and magnetic properties. J. Magn. Magn. Mater. 420, 109–116 (2016)CrossRefGoogle Scholar
  23. 23.
    Shannon, R.D.: Actacrystalographica Section A, Revised effective ionic radii and systematic studies of inter-atomic distances in halides and chalcogenides 32 751–767 (1976)Google Scholar
  24. 24.
    Gabal, M.A., AlAngari, Y.M., Zaki, H.M.: Structural, magnetic and electrical characterization of Mg–Ni nano-crystalline ferrites prepared through egg-white precursor. J. Magn. Magn. Mater. 363, 6–15 (2014)CrossRefGoogle Scholar
  25. 25.
    Chandra Babu Naidu, K., Madhuri, W.: Microwave assisted solid state reaction method: investigations on electrical and magnetic properties NiMgZn ferrites. Mater. Chem. Phys. 181, 432–443 (2016)CrossRefGoogle Scholar
  26. 26.
    Islam, R., Hakim, M.A., Rahman, M.O., Narayan Das, H., Mamun, M.A.: Study of the structural, magnetic and electrical properties of Gd-substituted Mn–Zn mixed ferrites. J. Alloys Compd. 559, 174–180 (2013)CrossRefGoogle Scholar
  27. 27.
    Lobo, L.S., Kalainathan, S., Ruban Kumar, A.: Investigation of electrical studies of spinel FeCo2O4 synthesized by sol-gel method. Super Latt. Microstruct. 88, 116–126 (2015)CrossRefGoogle Scholar
  28. 28.
    Belal Hossen, M., Akther Hossain, A.K.M.: Influence of Al3+ substitution on impedance spectroscopy studies of Ni0.27Cu0.10Zn0.63AlxFe2- xO4, advanced. Mater. Lett. 6, 810–815 (2015)Google Scholar
  29. 29.
    Liu, J., Duan, C.-G., Yin, W.-G., Mei, W.N., Smith, R.W., Hardy, J.R.: Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119, 2812–2819 (2003)CrossRefGoogle Scholar
  30. 30.
    Ranjan, R., Kumar, N., Behera, B., Choudhary, R.N.P.: Investigations of impedance and electric modulus properties of Pb1-xSmx(Zr0.45 Ti0.55)1-x/4O3 ceramics, advanced. Mater. Lett. 5, 138–142 (2014)CrossRefGoogle Scholar
  31. 31.
    Rahman, M.T., Ramana, C.V.: Impedance spectroscopic characterization of gadolinium substituted cobalt ferrite ceramics. J. Appl. Phys. 116, 164108 (2014)CrossRefGoogle Scholar
  32. 32.
    Verma, K., Kumar, A., Varshney, D.: Dielectric relaxation behavior of AxCo1−xFe2O4 (A = Zn, Mg) mixed ferrites. J. Alloys Compd. 526, 91–97 (2012)CrossRefGoogle Scholar
  33. 33.
    Zaki, H.M., Al-Heniti, S.H., Elmosalami, T.A.: Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J. Alloys Compd. 633, 104–114 (2015)CrossRefGoogle Scholar
  34. 34.
    Koval, V., Viola, G., Tan, Y.: Biasing effects in ferroic materials, Edited by Aime Pelaiz Barranco, ISBN 978-953-51-2147-3, 254 pages, Publisher: InTech, Chapters published July 29, 2015 under CC BY 3.0 license,  https://doi.org/10.5772/59294. http://www.intechopen.com/books/ferroelectric-materials-synthesis-and-characterization,

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • K. Chandra Babu Naidu
    • 1
    Email author
  • V. Narasimha Reddy
    • 2
  • T. Sofi Sarmash
    • 2
  • D. Kothandan
    • 3
  • T. Subbarao
    • 2
  • N. Suresh Kumar
    • 4
  1. 1.Srinivasa Ramanujan Institute of TechnologyAnantapuramuIndia
  2. 2.Materials Research Laboratory, Department of PhysicsS. K. UniversityAnantapurIndia
  3. 3.Sreenivasa Institute of Technology and Management SciencesChittoorIndia
  4. 4.Department of PhysicsJNTUCEAAnantapuramuIndia

Personalised recommendations