Advertisement

Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 157–167 | Cite as

Microwave absorption of Mn0.5Zn0.5Fe2O4 nanoparticles integrated in multi-walled carbon nanotubes

  • M. Dalal
  • A. Mallick
  • P. K. ChakrabartiEmail author
Research
  • 40 Downloads

Abstract

Nanoparticles of Mn0.5Zn0.5Fe2O4 are prepared by the simple co-precipitation method. To get smaller nanoparticles having different sizes, as dried powdered sample is annealed for 5 h at 200 and 400 °C. The two annealed samples with low average sizes are encapsulated in multi-walled carbon nanotubes (MWCNTs). Desired crystallographic phase formation is confirmed by recording and analysing X-ray diffraction (XRD) patterns. Other structural and microstructure information is derived using the Rietveld analysis of the observed XRD patterns. The average crystallite sizes of all samples lie in the range of 6–10 nm. Hexagonal phase of MWCNTs is found in both the encapsulated samples. Crystallographic phase formation and integration of the nanoparticles in MWCNTs are further confirmed by high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. Elemental analysis confirms the desired atomic percentages of Mn, Zn and Fe in the samples. Microwave (MW) absorption capability of the encapsulated nanoparticles is ensured by recording the reflection loss (RL) profile in the X (8–12 GHz) and Ku (12–18 GHz) bands of frequency. A maximum RL of ~ − 20.3 dB is achieved at a matching frequency of 15.45 GHz for ~ 10 nm nanoparticles in the MWCNT matrix with a layer thickness of 1 mm. This high value of RL with bandwidth corresponding to RL less than − 10 dB of 4.32 GHz suggests that Mn0.5Zn0.5Fe2O4 nanoparticles in the MWCNT matrix could be a significant MW-absorbing material.

Keywords

Ferrites Carbon nanotube X-ray diffraction Electron microscopy Raman spectroscopy Microwave absorption 

Notes

Acknowledgements

The authors acknowledge the UGC-DAE CSR Kolkata Centre for providing the micro XRF measurement facility.

Funding information

The authors acknowledge the DST Government of India for the financial support in the project (File no. EMR/2017/000832 dated 19 March 2018) and FIST programme (File no. SR/FST/PSI-170/2011(C) dated 18 May 2012).

References

  1. 1.
    Che, R.C., Peng, L.M., Duan, X.F., Chen, Q., Liang, X.L.: Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater. 16(5), 401–405 (2004).  https://doi.org/10.1002/adma.200306460 CrossRefGoogle Scholar
  2. 2.
    Akhtar, M.N., Yahya, N., Koziol, K., Nasir, N.: Synthesis and characterizations of Ni0.8Zn0.2Fe2O4-MWCNTs composites for their application in sea bed logging. Ceram Int. 37, 3237–3245 (2011).  https://doi.org/10.1016/j.ceramint.2011.05.113 CrossRefGoogle Scholar
  3. 3.
    Liu, P., Yao, Z., Zhou, J.: Preparation of reduced graphene oxide/Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites and their excellent microwave absorption properties. Ceram Int. 41, 13409–13416 (2015).  https://doi.org/10.1016/j.ceramint.2015.07.129 CrossRefGoogle Scholar
  4. 4.
    Mallick, A., Mahapatra, A.S., Mitra, A., Chakrabarti, P.K.: Soft magnetic property and enhanced microwave absorption of nanoparticles of Co0.5Zn0.5Fe2O4 incorporated in MWCNT. J Magn Magn Mater. 416, 181–187 (2016).  https://doi.org/10.1016/j.jmmm.2016.04.073 CrossRefGoogle Scholar
  5. 5.
    Razzitte, A.C., Jacobo, S.E., Fano, W.G.: Magnetic properties of MnZn ferrites prepared by soft chemical routes. J Appl Phys. 87, 6232–6234 (2000).  https://doi.org/10.1063/1.372664 CrossRefGoogle Scholar
  6. 6.
    Amiri, G.R., Yousefi, M.H., Abolhassani, M.R., Manouchehri, S., Keshavarz, M.H., Fatahian, S.: Magnetic properties and microwave absorption in Ni–Zn and Mn–Zn ferrite nanoparticles synthesized by low-temperature solid-state reaction. J Magn Magn Mater. 323, 730–734 (2011).  https://doi.org/10.1016/j.jmmm.2010.10.034 CrossRefGoogle Scholar
  7. 7.
    Takahashi, K., Tonouchi, M.: Influence of manganese doping in multiferroic bismuth ferrite thin films. J Magn Magn Mater. 310(2), 1174–1176 (2007).  https://doi.org/10.1016/j.jmmm.2006.10.280 CrossRefGoogle Scholar
  8. 8.
    Mukherjee, A., Basu, S., Green, L.A.W., Thanh, N.T.K., Pal, M.: Enhanced multiferroic properties of Y and Mn codoped multiferroic BiFeO3 nanoparticles. J Mater Sci. 50, 1891–1900 (2015).  https://doi.org/10.1007/s10853-014-8752-8 CrossRefGoogle Scholar
  9. 9.
    Song, J., Wang, L., Xu, N., Zhang, Q.: Microwave absorbing properties of magnesium-substituted MnZn ferrites prepared by citrate-EDTA complexing method. J Mater Sci Technol. 26(9), 787–792 (2010)CrossRefGoogle Scholar
  10. 10.
    Gama, A.M., Rezende, M.C., Dantas, C.C.: Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials. J Magn Magn Mater. 323, 2782–2785 (2011).  https://doi.org/10.1016/j.jmmm.2011.05.052 CrossRefGoogle Scholar
  11. 11.
    Ghasemi, A., Shirsath, S.E., Liu, X., Morisako, A.: Enhanced reflection loss characteristics of substituted barium ferrite/functionalized multi-walled carbon nanotube nanocomposites. J Appl Phys. 109, 07A507 (2011).  https://doi.org/10.1063/1.3551727 CrossRefGoogle Scholar
  12. 12.
    Ghasemi, A., Shirsath, S.E., Liu, X., Morisako, A.: A comparison between magnetic and reflection loss characteristics of substituted strontium ferrite and nanocomposites of ferrite/carbon nanotubes. J Appl Phys. 111, 07B543 (2012).  https://doi.org/10.1063/1.3683012 CrossRefGoogle Scholar
  13. 13.
    Sutradhar, S., Mukhopadhyay, K., Pati, S., Das, S., Das, D., Chakrabarti, P.K.: Modulated magnetic property, enhanced microwave absorption and Mössbauer spectroscopy of Ni0.40Zn0.40Cu0.20Fe2O4 nanoparticles embedded in carbon nanotubes. J Alloys Compd. 576, 126–133 (2013).  https://doi.org/10.1016/j.jallcom.2013.04.059 CrossRefGoogle Scholar
  14. 14.
    Mahapatra, A.S., Mitra, A., Mallick, A., Chakrabarti, P.K.: XRD, HRTEM, magnetic, dielectric and enhanced microwave reflection loss of GaFeO3 nanoparticles encapsulated in multi-walled carbon nanotubes. Ceram Int. 42, 3826 (2016).  https://doi.org/10.1016/j.ceramint.2015.11.047 CrossRefGoogle Scholar
  15. 15.
    Young, R.A., Willes, D.B.: Profile shape functions in Rietveld refinements. J Appl Crystallogr. 15, 430–438 (1982).  https://doi.org/10.1107/S002188988201231X CrossRefGoogle Scholar
  16. 16.
    Popa, N.C.: The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J Appl Crystallogr. 31, 176–180 (1998).  https://doi.org/10.1107/S0021889897009795 CrossRefGoogle Scholar
  17. 17.
    Attia, S.M.: Study of cation distribution of Mn-Zn ferrites. Egypt J Solids. 29(2), 329–340 (2006)Google Scholar
  18. 18.
    Gopalan, E.V., Malini, K.A., Kumar, D.S., Yoshida, Y., Al-Omari, I.A., Saravanan, S., Anantharaman, M.R.: On the dielectric dispersion and absorption in nanosized manganese zinc mixed ferrites. J Phys Condens Matter. 21, 146006 (2009).  https://doi.org/10.1088/0953-8984/21/14/146006 CrossRefGoogle Scholar
  19. 19.
    Varshney, D., Verma, K., Kumar, A.: Substitutional effect on structural and magnetic properties of AxCo1-xFe2O4 (A = Zn, Mg and x = 0.0, 0.5) ferrites. J Mol Struct. 1006, 447–452 (2011).  https://doi.org/10.1016/j.molstruc.2011.09.047 CrossRefGoogle Scholar
  20. 20.
    Fattah, A.R.A., Majdi, T., Abdalla, A.M., Ghosh, S., Puri, I.K.: Nickel nanoparticles entangled in carbon nanotubes: novel ink for nanotube printing. ACS Appl Mater Interfaces. 8, 1589–1593 (2016).  https://doi.org/10.1021/acsami.5b11700 CrossRefGoogle Scholar
  21. 21.
    Wang, Z., Schiferl, D., Zhao, Y., O’Neill, H., St, C.: High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4. J Phys Chem Solids. 64, 2517–2523 (2003).  https://doi.org/10.1016/j.jpcs.2003.08.005 CrossRefGoogle Scholar
  22. 22.
    Hameed, A.S., Bahiraei, H., Reddy, M.V., Shoushtari, M.Z., Vittal, J.J., Ong, C.K., Chowdari, B.V.R.: Lithium storage properties of pristine and (Mg, Cu) codoped ZnFe2O4 nanoparticles. ACS Appl Mater Interfaces. 6(13), 10744–10753 (2014).  https://doi.org/10.1021/am502605s CrossRefGoogle Scholar
  23. 23.
    Gasparov, L., Rush, A., Pekarek, T., Patel, N., Berger, H.: Raman studies of doped magnetite above and below the Verwey transition. J Appl Phys. 105, 07E109 (2009)CrossRefGoogle Scholar
  24. 24.
    Sanpo, N., Berndt, C.C., Wang, J.: Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods. J Appl Phys. 112, 084333 (2012).  https://doi.org/10.1063/1.4761987 CrossRefGoogle Scholar
  25. 25.
    Varshney, D., Verma, K., Kumar, A.: Structural and vibrational properties of ZnxMn1-xFe2O4 (x = 0.0, 0.25, 0.50, 0.75, 1.0) mixed ferrites. Mater Chem Phys. 131, 413–419 (2011).  https://doi.org/10.1016/j.matchemphys.2011.09.066 CrossRefGoogle Scholar
  26. 26.
    Misra, S., Karan, T., Ram, S.: Dynamics of surface spins in small core−shell magnets of Li0.35Zn0.30Fe2.35O4 bonds over a carbon surface and tailored magnetic properties. J Phys Chem C. 119, 23184–23195 (2015).  https://doi.org/10.1021/acs.jpcc.5b04635 CrossRefGoogle Scholar
  27. 27.
    Lu, J.F., Tsai, C.J.: Hydrothermal phase transformation of hematite to magnetite. Nanoscale Res Lett. 9, 230 (2014).  https://doi.org/10.1186/1556-276X-9-230 CrossRefGoogle Scholar
  28. 28.
    Chaudhari, N.S., Warule, S.S., Muduli, S., Kale, B.B., Jouen, S., Lefez, B., Hannoyer, B., Ogale, S.B.: Maghemite (hematite) core (shell) nanorods via thermolysis of a molecular solid of Fe-complex. Dalton Trans. 40, 8003–8011 (2011).  https://doi.org/10.1039/c1dt10319a CrossRefGoogle Scholar
  29. 29.
    Chikazumi S. Physics of ferromagnetism Oxf. Sci. Publ. 203 (1997)Google Scholar
  30. 30.
    Morrison, S.A., Cahill, C.L., Carpenter, E.E., Calvin, S., Harris, V.G.: Preparation and characterization of MnZn–ferrite nanoparticles using reverse micelles. J Appl Phys. 93, 7489–7491 (2003).  https://doi.org/10.1063/1.1555751 CrossRefGoogle Scholar
  31. 31.
    Boughriet, A.H., Legrand, C., Chapoton, A.: Noniterative stable transmission/reflection method for low-loss material complex permittivity determination. IEEE Trans Microw Theory Tech. 45, 52–57 (1997).  https://doi.org/10.1109/22.552032 CrossRefGoogle Scholar
  32. 32.
    Dong, X.L., Zhang, X.F., Huang, H., Zuo, F.: Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Appl Phys Lett. 92, 013127 (2008).  https://doi.org/10.1063/1.2830995 CrossRefGoogle Scholar
  33. 33.
    Che, R.C., Zhi, C.Y., Liang, C.Y., Zhou, X.G.: Fabrication and microwave absorption of carbon nanotubes CoFe2O4 spinel nanocomposite. Appl Phys Lett. 88, 033105 (2006).  https://doi.org/10.1063/1.2165276 CrossRefGoogle Scholar
  34. 34.
    Zhang, T., Zhong, B., Yang, J.Q., Huang, X.X., Wen, G.: Boron and nitrogen doped carbon nanotubes/Fe3O4 composite architectures with microwave absorption property. Ceram Int. 41, 8163–8170 (2015).  https://doi.org/10.1016/j.ceramint.2015.03.031 CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  1. 1.Solid State Research Laboratory, Department of PhysicsBurdwan UniversityBurdwanIndia

Personalised recommendations