Advertisement

Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 145–155 | Cite as

Preparation and in vitro investigation on bioactivity of magnesia-contained bioactive glasses

  • Sampath Kumar ArepalliEmail author
  • Himanshu Tripathi
  • Partha Pratim Manna
  • Paliwal Pankaj
  • Sairam Krishnamurthy
  • Shashikant C.U. Patne
  • Ram Pyare
  • S. P. SinghEmail author
Research

Abstract

Mg plays an important role in the human skeletal system as it stimulates the bone formation and reduces bone resorption. Magnesium has been substituted into SiO2–Na2O–CaO–P2O5 bioactive glass. In the present work, the bioactive glasses were designed to enhance bioactivity. Bioactivity of these glasses was assessed by the immersion of the samples in simulated body fluid (SBF) for different time periods. The formation of hydroxy carbonate apatite (HCA) layer was confirmed by scanning electron microscopy, X-ray diffractometry, and FTIR spectrometry which had shown the HCA layer formation and growth. The formation of HCA layer was found to increase on the surface of the SBF immersed bioactive glasses with increasing magnesia contents in the glass. In vitro cell culture investigations such as viability, proliferation, and cell attachment were studied using human osteosarcoma U2-OS cell lines. The in vitro results of new magnesium containing bioactive glasses had shown improved bioactivity as well as better biocompatibility.

Keywords

Magnesium oxide Bioactive glass Cytocompatibility Cell attachment 

Notes

Acknowledgements

The authors gratefully acknowledge the Head of the Department of Ceramic Engineering, IIT (BHU) and the honorable Director, Indian Institute of Technology (BHU) Varanasi, India for providing the necessary facilities for the present research work. The author, Sampath Kumar Arepalli, is also very much grateful to the University Grants Commission, New Delhi, India (F.14-2(SC)/2010(SA-III)) for providing Rajiv Gandhi National Fellowship for this research work. The authors are thankful to central instrument facility centre (CIFC), IIT(BHU), Varanasi, India for providing the SEM and EDS facilities for this research work.

Funding information

The present work was supported by the grant from the Department of Biotechnology (DBT), New Delhi, India, Nos. BT/PR11490/BRB/10/675/2008 (PPM).

References

  1. 1.
    Cao, W., Hench, L.L.: Bioactive materials. Ceram Int. 22(6), 493–507 (1996)Google Scholar
  2. 2.
    Kokubo, T., Ito, S.: Ca , P-rich layer formed on high-strength bioactive. J Biomed Mater Res. 24, 331–343 (1990)Google Scholar
  3. 3.
    Hench, L.L.: Bioceramics. J Am Ceram Soc. 81(7), 1705–1728 (2005)Google Scholar
  4. 4.
    Hench, L.L.: The story of Bioglass®. J Mater Sci Mater Med. 17(11), 967–978 (2006)Google Scholar
  5. 5.
    Xynos, I.D., Edgar, A.J., Buttery, L.D.K., Hench, L.L., Polak, J.M.: Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res. 55(2), 151–157 (2001)Google Scholar
  6. 6.
    Hench, L.L., Polak, J.M.: Third-generation biomedical materials. Science (80-. ). 295(5557), 1014–1017 (2002)Google Scholar
  7. 7.
    Nosouhian, S., Razavi, M., Jafari-pozve, N., Rismanchian, M.: “Comparative evaluation of hydroxyapatite and nano-bioglass in two forms of conventional micro- and nano-particles in repairing bone defects (an animal study),” Indian. J Dent Res. 26(4), 366 (2015)Google Scholar
  8. 8.
    Oonishi, H., Hench, L.L., Wilson, J., Sugihara, F., Tsuji, E., Kushitani, S., Iwaki, H.: Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res. 44(1), 31–43 (1999)Google Scholar
  9. 9.
    Mistry, S., Datta, S., Kundu, D., Basu, D.: Effects of bioactive glass, hydroxyapatite and bioactive glass—hydroxyapatite composite graft particles in the treatment of infrabony defects. J Indian Soc Periodontol. 16(2), 241–246 (2012)Google Scholar
  10. 10.
    Diba, M., Tapia, F., Boccaccini, A.R., Strobel, L.A.: Magnesium-containing bioactive glasses for biomedical applications. Int J Appl Glas Sci. 3(3), 221–253 (2012)Google Scholar
  11. 11.
    Saboori, A., Rabiee, M., Moztarzadeh, F., Sheikhi, M., Tahriri, M., Karimi, M.: Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater Sci Eng C. 29(1), 335–340 (2009)Google Scholar
  12. 12.
    Karakassides, M.A., Saranti, A., Koutselas, I.: Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. J Non-Cryst Solids. 347(1–3), 69–79 (2004)Google Scholar
  13. 13.
    Zhao, Y., Song, M., Liu, J.: Characteristics of bioactive glass coatings obtained by pulsed laser deposition. Surf Interface Anal. 40(11), 1463–1468 (2008)Google Scholar
  14. 14.
    Soulié, J., Nedelec, J.M., Jallot, E.: Influence of Mg doping on the early steps of physico-chemical reactivity of sol-gel derived bioactive glasses in biological medium. Phys Chem Chem Phys. 11(44), 10473–10483 (2009)Google Scholar
  15. 15.
    Ma, J., Chen, C.Z., Wang, D.G., Jiao, Y., Shi, J.Z.: Effect of magnesia on the degradability and bioactivity of sol–gel derived SiO2–CaO–MgO–P2O5 system glasses. Colloids Surfaces B Biointerfaces. 81(1), 87–95 (2010)Google Scholar
  16. 16.
    Ma, J., Chen, C.Z., Wang, D.G., Meng, X.G., Shi, J.Z.: In vitro degradability and bioactivity of mesoporous CaO-MgO-P2O5-SiO2 glasses synthesized by sol-gel method. J Sol-Gel Sci Technol. 54(1), 69–76 (2010)Google Scholar
  17. 17.
    Verné, E., Bretcanu, O., Balagna, C., Bianchi, C.L., Cannas, M., Gatti, S., Vitale-Brovarone, C.: Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics. J Mater Sci Mater Med. 20(1), 75–87 (2009)Google Scholar
  18. 18.
    Arepalli, S.K., Tripathi, H., Vyas, V.K., Jain, S., Suman, S.K., Pyare, R., Singh, S.P.: Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass. Mater Sci Eng C. 49, 549–559 (2015)Google Scholar
  19. 19.
    Arepalli, S.K., Tripathi, H., Hira, S.K., Manna, P.P., Pyare, R., Singh, S.P.: Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses. Mater Sci Eng C. 69, 108–116 (2016)Google Scholar
  20. 20.
    O’Donnell, M.D., Hill, R.G.: Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater. 6(7), 2382–2385 (2010)Google Scholar
  21. 21.
    Queiroz, C.M., Agathopoulos, S., Frade, J.R., Fernandes, M.H.V.: Network connectivity and bio-mineralization of 0.45SiO2–(0.45-x)MgO–xK2O–0.1(3CaO:P2O5) Glasses. Mater Sci Forum. 455–456, 383–387 (2004)Google Scholar
  22. 22.
    Kapoor, S., Semitela, Â., Goel, A., Xiang, Y., Du, J., Lourenço, A.H., Sousa, D.M., Granja, P.L., et al.: Understanding the composition–structure–bioactivity relationships in diopside (CaO·MgO·2SiO2)–tricalcium phosphate (3CaO·P2O5) glass system. Acta Biomater. 15, 210–226 (2015)Google Scholar
  23. 23.
    Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27(15), 2907–2915 (2006)Google Scholar
  24. 24.
    Thomas, T.P., Majoros, I.J., Kotlyar, A., Kukowska-Latallo, J.F., Bielinska, A., Myc, A., Baker, J.R.: Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J Med Chem. 48(11), 3729–3735 (2005)Google Scholar
  25. 25.
    Hira, S.K., Mishra, A.K., Ray, B., Manna, P.P.: Targeted delivery of doxorubicin-loaded poly (ε-caprolactone)-b-poly (N-vinylpyrrolidone) micelles enhances antitumor effect in lymphoma. PLoS One. 9(4), e94309 (2014)Google Scholar
  26. 26.
    Hench, L.L.: Bioceramics: from concept to clinic. J Am Ceram Soc. 74(7), 1487–1510 (1991)Google Scholar
  27. 27.
    Balamurugan, A., Balossier, G., Kannan, S., Michel, J., Rebelo, A.H.S., Ferreira, J.M.F.: Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass. Acta Biomater. 3(2), 255–262 (2007)Google Scholar
  28. 28.
    Paul, A.: Chemistry of Glasses, 1st edn, pp. 116–135. Chapman and Hall, London (1982)Google Scholar
  29. 29.
    C.R. Das.: Ph.D Thesis, University of Sheffield, UK, 1963Google Scholar
  30. 30.
    Boksay, Z., Bouquet, G.: The pH dependence and electrochemical interpretation of the dissolution rate of a silicate glass network. Phys Chem Glasses. 21(3), 110–113 (1980)Google Scholar
  31. 31.
    Varshneya, A.K.: Fundamentals of Inorganic Glasses, 2nd edn, pp. 467–470. Society of Glass Technology, Sheffield (2006)Google Scholar
  32. 32.
    Silver, I.A., Deas, J., Erecińska, M.: Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials. 22(2), 175–185 (2001)Google Scholar
  33. 33.
    Goel, A., Rajagopal, R.R., Ferreira, J.M.F.: Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO-SrO-SiO2-P2O5-CaF2 glasses. Acta Biomater. 7(11), 4071–4080 (2011)Google Scholar
  34. 34.
    Lee, J.D.: Concise Inorganic Chemistry, 4th edn, p. 330. Chapman and Hall, London (1991)Google Scholar
  35. 35.
    Tulyaganov, D.U., Makhkamov, M.E., Urazbaev, A., Goel, A., Ferreira, J.M.F.: Synthesis, processing and characterization of a bioactive glass composition for bone regeneration. Ceram Int. 39(3), 2519–2526 (2013)Google Scholar
  36. 36.
    Cerruti, M., Greenspan, D., Powers, K.: Effect of pH and ionic strength on the reactivity of Bioglass® 45S5. Biomaterials. 26(14), 1665–1674 (2005)Google Scholar
  37. 37.
    Al-Noaman, A., Rawlinson, S.C.F.F., Hill, R.G.: The role of MgO on thermal properties , structure and bioactivity of bioactive glass coating for dental implants. J Non-Cryst Solids. 358(22), 3019–3027 (2012)Google Scholar
  38. 38.
    Fujibayashi, S.: A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O–CaO–SiO2 glasses. Biomaterials. 24(8), 1349–1356 (2003)Google Scholar
  39. 39.
    Fredholm, Y.C., Karpukhina, N., Law, R.V., Hill, R.G.: Strontium containing bioactive glasses: glass structure and physical properties. J Non-Cryst Solids. 356(44–49), 2546–2551 (2010 Oct 1)Google Scholar
  40. 40.
    Romeis, S., Hoppe, A., Eisermann, C., Schneider, N., Boccaccini, A.R., Schmidt, J., Peukert, W.: Enhancing in vitro bioactivity of melt-derived 45S5 bioglass® by comminution in a stirred media mill. J Am Ceram Soc. 97(1), 150–156 (2014)Google Scholar
  41. 41.
    Tulyaganov, D.U., Agathopoulos, S., Valerio, P., Balamurugan, A., Saranti, A., Karakassides, M.A., Ferreira, J.M.: Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO–MgO–SiO2–Na2O–P2O5–CaF2. J Mater Sci Mater Med. 22(2), 217–227 (2011)Google Scholar
  42. 42.
    Gaafar, M.S., Marzouk, S.Y., Zayed, H.A., Soliman, L.I., El-Deen, A.S.: Structural studies and mechanical properties of some borate glasses doped with different alkali and cobalt oxides. Curr Appl Phys. 13(1), 152–158 (2013)Google Scholar
  43. 43.
    Saboori, A., Sheikhi, M., Moztarzadeh, F., Rabiee, M., Hesaraki, S., Tahriri, M., Nezafati, N.: Sol–gel preparation, characterisation and in vitro bioactivity of Mg containing bioactive glass. Adv Appl Ceram. 108(3), 155–161 (2009)Google Scholar
  44. 44.
    Watts, S.J., Hill, R.G., O’Donnell, M.D., Law, R.V.: Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids. 356(9–10), 517–524 (2010)Google Scholar
  45. 45.
    Ducheyne, P., Qiu, Q.: Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 20(23–24), 2287–2303 (1999)Google Scholar
  46. 46.
    Kaur, G., Pandey, O.P., Singh, K., Homa, D., Scott, B., Pickrell, G.: A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res - Part A. 102(1), 254–274 (2014)Google Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  1. 1.Department of Ceramic EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  2. 2.Immunobiology Laboratory, Department of ZoologyBanaras Hindu UniversityVaranasiIndia
  3. 3.Department of PharmaceuticsIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  4. 4.Department of Pathology, Institute of Medical ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations