Influence of heating rate and mechanical activation on the reaction between kaolin and aluminium powder
- 34 Downloads
Abstract
In this work, the effect of heating rate and mechanical activation on the reaction of kaolin and aluminium powder was investigated. A batch comprised of 89.5 wt% kaolin and 10.5 wt% aluminium powders was mixed and milled in a planetary ball-mill for 1, 5, 10, 20 and 40 h. The mixture powders were heat treated with a heating rate of 5, 10, 15, 20, 30 and 40 °C/min, respectively. After milling for 20 and 40 h, the results showed the formation of free silicon, quartz and nacrite (Al2Si2(OH)4) at room temperature. The kaolinite dehydroxylation, aluminium oxidation and the θ- to α-Al2O3 transformations are highly affected by heating rate and mechanical activation. As compared with the smallest heating rate, the mixtures heated with faster heating rate show the disappearance of the peak corresponding to the oxidation of aluminium and the appearance of a second peak corresponding to the formation of α-Al2O3. The intensity of the last peak increases with increasing of the heating rate and milled at lower milling time. The effects of heating rate in the reaction of kaolin and aluminium powder are attributed to the amorphization of kaolinite, the diffusion of Al3+ to form an amorphous alumina layer on the particle surface and the generation of microcracks at the particle surface of aluminium powder.
Keywords
Heating rate Mechanical activation Kaolinite, aluminium oxidation Alumina transitionsNotes
Acknowledgements
The authors would like to acknowledge Mrs. P. Díaz and Mrs. E. Sánchez for their technical assistance. K. Belhouchet wants to thank University Ferhat Abbas of Sétif 1 for providing financial support to carry out a scientific stay at the IETcc-CSIC.
References
- 1.Bai, J.: Fabrication and properties of porous mullite ceramics from calcined carbonaceous kaolin and α-Al2O3. Ceram. Int. 36(2), 673–678 (2010)CrossRefGoogle Scholar
- 2.Schneider, H., Schreuer, J., Hildmann, B.: Structure and properties of mullite—a review. J. Eur. Ceram. Soc. 28(2), 329–344 (2008)CrossRefGoogle Scholar
- 3.Singh, A.K., Sarkar, R.: Nano mullite bonded refractory castable composition for high temperature applications. Ceram. Int. 42(11), 12937–11294 (2016)CrossRefGoogle Scholar
- 4.Romero, M., Pérez, J.M.: Relation between the microstructure and technological properties of porcelain stoneware. A review. Mater. Constr. 65(320), e065 (2015)CrossRefGoogle Scholar
- 5.Wang, Z., Feng, P., Wang, X., Geng, P., Akhtar, F., Zhang, H.: Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin. Ceram. Int. 42(10), 12414–12421 (2016)CrossRefGoogle Scholar
- 6.Guo, H., Ye, F., Li, W., Song, X., Xie, G.: Preparation and characterization of foamed microporous mullite ceramics based on kyanite. Ceram. Int. 41(10), 14645–14651 (2015)CrossRefGoogle Scholar
- 7.Sousa, L.L., Souza, A.D.V., Fernandes, L., Arantes, V.L., Salomao, R.: Development of densification-resistant castable porous structures from in situ mullite. Ceram. Int. 41(8), 9443–9454 (2015)CrossRefGoogle Scholar
- 8.Ganesh, I., Ferreira, J.M.F.: Influence of raw material type and of the overall chemical composition on phase formation and sintered microstructure of mullite aggregates. Ceram. Int. 35(5), 2007–2015 (2009)CrossRefGoogle Scholar
- 9.Viswabaskaran, V., Gnanam, F.D., Balasubramanian, M.: Mullitization behaviour of calcined clay–alumina mixtures. Ceram. Int. 29(5), 561–571 (2003)CrossRefGoogle Scholar
- 10.Liu, Y.F., Liu, X.Q., Tao, S.W., Meng, G.Y., Sorensen, O.T.: Kinetics of the reactive sintering of kaolinite-aluminum hydroxide extrudate. Ceram. Int. 28(5), 479–486 (2002)CrossRefGoogle Scholar
- 11.Esharghawi, A., Penot, C., Nardou, F.: Contribution to porous mullite synthesis from clays by adding Al and Mg powders. J. Eur. Ceram. Soc. 29(1), 31–38 (2009)CrossRefGoogle Scholar
- 12.Chen, Y.F., Wang, M.C., Hon, M.H.: Transformation kinetics for mullite in kaolin-Al2O3 ceramics. J. Mater. Res. 18(6), 1355–1362 (2003)CrossRefGoogle Scholar
- 13.Sahnoune, F., Chegaar, M., Saheb, N., Goeuriot, P., Valdivieso, F.: Algerian kaolinite used for mullite formation. Appl. Clay Sci. 38(3–4), 304–310 (2008)CrossRefGoogle Scholar
- 14.Chen, Y.F., Chang, Y.H., Wang, M.C., Hon, M.H.: Effects of Al2O3 addition on the phases, flow characteristics and morphology of the porous kaolin ceramics. Mater. Sci. Eng. A. 373, 221–228 (2004)CrossRefGoogle Scholar
- 15.Tezuka, N., Low, I.M., Davies, I.J., Prior, M., Studer, A.: In situ neutron diffraction investigation on the phase transformation sequence of kaolinite and halloysite to mullite. Physica B. 385-386(1), 555–557 (2006)CrossRefGoogle Scholar
- 16.Vijayan, C., Soundararajan, N., Chandramohan, R., Ramaswamy, S., Gnanadurai, P.: The effect of heating rate on the phase transition and crystallization kinetics of Ag2Se0.2Te0.8 alloy. J. Therm. Anal. Calorim. 119(1), 91–97 (2015)CrossRefGoogle Scholar
- 17.Soifer, L., Korin, E.: Effect of heating rate on crystallization kinetics of amorphous Al91La5Ni4 alloys by DSC. J. Therm. Anal. Calorim. 56(1), 437–446 (1999)CrossRefGoogle Scholar
- 18.Katoh, K., Ito, S., Kawaguchi, S., Higashi, E., Nakano, K., Ogata, Y., Wada, Y.: Effect of heating rate on the thermal behavior of nitrocellulose. J. Therm. Anal. Calorim. 100(1), 303–308 (2010)CrossRefGoogle Scholar
- 19.Sahraoui, T., Belhouchet, H., Heraiz, M., Brihi, N., Guermat, A.: The effects of mechanical activation on the sintering of mullite produced from kaolin and aluminum powder. Ceram. Int. 42(10), 12185–12193 (2016)CrossRefGoogle Scholar
- 20.Welham, N.J., Berbenni, V., Chapman, P.G.: Increased chemisorption onto activated carbon after ball-milling. Carbon. 40(13), 2307–2315 (2002)CrossRefGoogle Scholar
- 21.Zyryanov, V.V.: Ultrafast mechanochemical synthesis of mixed oxides. Inorg. Mater. 41(4), 378–392 (2005)CrossRefGoogle Scholar
- 22.Tamborenea, S., Mazzoni, A.D., Aglietti, E.F.: Mechanochemical activation of minerals on the cordierite synthesis. Thermochim. Acta. 411(2), 219–224 (2004)CrossRefGoogle Scholar
- 23.Neto, J.B.R., Moreno, R.: Effect of mechanical activation on the rheology and casting performance of kaolin/talc/alumina suspensions for manufacturing dense cordierite bodies. Appl. Clay Sci. 38(3–4), 209–218 (2008)CrossRefGoogle Scholar
- 24.Boldyrev, V.V.: Mechanochemistry and mechanical activation of solids. Solid State Ionics. 63-65, 537–543 (1993)CrossRefGoogle Scholar
- 25.Chen, L., Ye, G., Xu, D., Zhu, L., Lu, Z., Dong, L., Liu, Y.: Chemical bond change of gibbsite and fumed silica mixture during mechanical activation. Mater. Lett. 85(15), 91–94 (2012)CrossRefGoogle Scholar
- 26.Behmanesh, N., Heshmati-Manesh, S., Ataie, A.: Role of mechanical activation of precursors in solid state processing of nano-structured mullite phase. J. Alloys Compd. 450(1–2), 421–425 (2008)CrossRefGoogle Scholar
- 27.Kong, L.B., Zhang, T.S., Ma, J., Boey, F.: Anisotropic grain growth of mullite in high-energy ball milled powders doped with transition metal oxides. J. Eur. Ceram. Soc. 23(13), 2247–2256 (2003)CrossRefGoogle Scholar
- 28.Aguilar-Santillan, J., Balmori-Ramirez, H., Bradt, R.C.: Dense mullite from attrition milled kyanite and α-alumina. J. Ceram. Process. Res. 8(1), 1–11 (2007)Google Scholar
- 29.Ebadzadeh, T.: Effect of mechanical activation and microwave heating on synthesis and sintering of nano-structured mullite. J. Alloys Compd. 489(1), 125–129 (2010)CrossRefGoogle Scholar
- 30.Razavi-Tousi, S.S., Nematollahi, G.A., Ebadzadeh, T., Szpunar, J.A.: Modifying aluminum-water reaction to generate nano-sized aluminium hydroxide particles beside hydrogen. Powder Technol. 241, 166–173 (2013)CrossRefGoogle Scholar
- 31.Belhouchet, H., Hamidouche, M., Bouaouadja, N., Garnier, V., Fantozzi, G.: Kinetics of mullite formation in zircon and boehmite mixture. Ann. Chimie Sci. Materiaux. 35(1), 17–25 (2010)CrossRefGoogle Scholar
- 32.Elmas, E., Yildiz, K., Toplan, N., Toplan, H.O.: The non-isothermal kinetics of mullite formation in mechanically activated kaolinite-alumina ceramic system. J. Therm. Anal. Calorim. 108(3), 1201–1206 (2012)CrossRefGoogle Scholar
- 33.Shahverdi-Shahraki, K., Ghosh, T., Mahajan, K., Ajji, A., Carreau, P.J.: Effect of dry grinding on chemically modified kaolin. Appl. Clay Sci. 105-106, 100–106 (2015)CrossRefGoogle Scholar
- 34.Dellisanti, F., Valdrè, G.: The role of microstrain on the thermostructural behaviour of industrial kaolin deformed by ball milling at low mechanical load. Int. J. Miner. Process. 102-103, 69–77 (2012)CrossRefGoogle Scholar
- 35.Chen, C.Y., Lan, G.S., Tuan, W.H.: Preparation of mullite by the reaction sintering of kaolinite and alumina. J. Eur. Ceram. Soc. 20(14–15), 2519–2525 (2000)CrossRefGoogle Scholar
- 36.Hasani, S., Panjepour, M., Shamania, M.: The oxidation mechanism of pure aluminum powder particles. Oxid. Met. 78(3–4), 179–195 (2012)CrossRefGoogle Scholar
- 37.Issaoui, M., Limousy, L., Lebeau, B., Bouaziz, J., Fourati, M.: Design and characterization of flat membrane supports elaborated from kaolin and aluminum powders. C. R. Chimie. 19(4), 496–504 (2016)CrossRefGoogle Scholar
- 38.Suvaci, E., Simkovich, G., Messing, G.: The reaction-bonded aluminium oxide process: I, the effect of attrition milling on the solid-state oxidation of aluminium powder. J. Am. Ceram. Soc. 83(2), 299–305 (2000)CrossRefGoogle Scholar
- 39.Bafrooei, H.B., Ebadzadeh, T., Majidian, H.: Microwave synthesis and sintering of forsterite nanopowder produced by high energy ball milling. Ceram. Int. 40(2), 2869–2876 (2014)CrossRefGoogle Scholar
- 40.Castelein, O., Soulestin, B., Bonnet, J.P., Blanchart, P.: The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceram. Int. 27(5), 517–522 (2001)CrossRefGoogle Scholar
- 41.Chen, L., Song, W.L., Lv, J., Wang, L., Xie, C.S.: Effect of heating rates on TG-DTA results of aluminum nanopowders prepared by laser heating evaporation. J. Therm. Anal. Calorim. 96(1), 141–145 (2009)CrossRefGoogle Scholar
- 42.Levin, I., Brandon, D.: Metastable alumina polymorphs: crystal structures and transition sequences. J. Am. Ceram. Soc. 81(8), 1995–2012 (1998)CrossRefGoogle Scholar
- 43.Dynys, F.W., Halloran, J.W.: Alpha alumina formation in alum-derived gamma alumina. J. Am. Ceram. Soc. 65(9), 442–448 (1982)CrossRefGoogle Scholar
- 44.Bossert, J., Fidancevska, E.: Effect of mechanical activation on the sintering of transition nanoscaled alumina. Sci. Sinter. 39(2), 117–125 (2007)CrossRefGoogle Scholar
- 45.Chen, G., Qi, H., Xing, W., Xu, N.: Direct preparation of macroporous mullite supports for membranes by in situ reaction sintering. J. Membr. Sci. 318(1–2), 38–44 (2008)CrossRefGoogle Scholar
- 46.Sainz, M.A., Serrano, F.J., Amigo, J.M., Bastida, J., Caballero, A.: XRD microstructural analysis of mullites obtained from kaolinite-alumina mixtures. J. Eur. Ceram. Soc. 20(4), 403–412 (2000)CrossRefGoogle Scholar